Skip to main content
Log in

Boundary-layer flow structures associated with particle reentrainment

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Measurements of near-surface longitudinal and vertical wind velocity components associated with particle reentrainment from a flat surface have been examined in a wind tunnel. Sparsely covered particle beds were used to assure that observed reentrainment events resulted primarily from the action of fluid forces. Characteristic velocity patterns were found to be associated with a majority of particle reentrainment events examined. These characteristics have been categorized and examined as ensemble averages. The flow pattern most frequently observed during particle reentrainment was termed Ejection-Sweep (E-S) and is very similar to organized fluid motions previously observed in laboratory flows and in the atmospheric boundary layer. A simple two-tiered E-S pattern recognition scheme is described which strives to identify particle reentrainment events objectively based on flow characteristics alone. The first step is to identify potential E-S patterns using criteria which identify a characteristic longitudinal acceleration, and the second step is to use threshold values of pattern characteristics to accept or reject these first-tier patterns. Pattern recognition results are presented in terms of the ability to identify reentrainment events versus false identifications, and show an exponential growth in false identifications with an increasing number of reentrainment events identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonia, R. A. and Bisset, D. K.: 1990, ‘Spanwise Structure in the Near-Wall Region of a Turbulent Boundary Layer’,J. Fluid Mech. 210, 437–458.

    Google Scholar 

  • Antonia, R. A., Bisset, D. K., and Browne, L. W. B.: 1990, ‘Effect of Reynolds Number on the Topology of the Organized Motion in a Turbulent Boundary Layer’.J. Fluid Mech. 213, 267–286.

    Google Scholar 

  • Bagnold, R. A.: 1941,The Physics of Blown Sand and Desert Dunes, Methuen, London, 265 pp.

    Google Scholar 

  • Blackwelder, R. F. and Kaplan, R. E.: 1976, ‘On the Wall Structure of the Turbulent Boundary Layer’,J. Fluid Mech. 76, 89–112.

    Google Scholar 

  • Blackwelder, R. F. and Haritonidis, J. H.: 1983, ‘Scaling of the Bursting Frequency in Turbulent Boundary Layers’,J. Fluid Mech. 132, 87–103.

    Google Scholar 

  • Braaten, D. A., Shaw, R. H., and Paw U. K. T.: 1986, ‘Particle Detachment in Turbulent Boundary Layers’,Aerosols: Formation and Reactivity, Pergamon Press. Oxford, pp. 370–373.

    Google Scholar 

  • Braaten, D. A., Paw, U. K. T. and Shaw, R. H.: 1988, ‘Coherent Turbulent Structures and Particle Detachment in Boundary Flows’,J. Aerosol. Sci. 19, 1183–1186.

    Google Scholar 

  • Braaten, D. A., Paw, U, K. T. and Shaw, R. H.: 1988, ‘Particle Resuspension in a Turbulent Boundary Layer—Observed and Modeled’,J. Aerosol Sci. 21, 613–628.

    Google Scholar 

  • Chepil, W. S.: 1945, ‘Dynamics of Wind Erosion: I. Nature of Movement of Soil by Wind’,Soil Sci. 60, 305–320.

    Google Scholar 

  • Cleaver, J. W. and Yates, B.: 1973, ‘Mechanism of Detachment of Colloidal Particles from a Flat Substrate in Turbulent Flow’,J. Colloid Interface Sci. 44, 464–474.

    Google Scholar 

  • Cooper, D. W.: 1986, ‘Particle Contamination and Microelectronics Manufacturing: an Introduction’,Aerosol Sci. Technol. 5, 287–299.

    Google Scholar 

  • Corino, E. R., and Brodkey, R. S.: 1969, ‘A Visual Investigation of the Wall Region in Turbulent Flow’,J. Fluid Mech. 37, 1.

    Google Scholar 

  • Corn, M.: 1966, ‘Adhesion of Particles’, C. N. Davies (eds),Aerosol Science, Academic Press, New York, pp. 359–392.

    Google Scholar 

  • Fairchild, C. I. and Tillery, M. I.: 1982, ‘Wind Tunnel Measurements of the Resuspension of Ideal Particles,Atmos. Env. 16, 229–238.

    Google Scholar 

  • Fletcher, B.: 1976a, ‘The Erosion of Dust by an Airflow’,J. Phys. D: Appl. Phys. 9, 913–924.

    Google Scholar 

  • Fletcher, B.: 1976b, ‘The Incipient Motion of Granular Materials’,J. Phys. D: Appl. Phys. 9, 2471–2478.

    Google Scholar 

  • Fukunishi, Y. and Sato, H.: 1987, ‘Formation of Intermittent Region by Coherent Motions in the Turbulent Boundary Layer’,Fluid Dynamics Res. 2, 113–124.

    Google Scholar 

  • Gao, W., Shaw, R. H. and Paw U, K. T.: 1989, ‘Observation of Organized Structure in Turbulent Flow Within and Above a Forest Canopy’,Boundary-Layer Meteorol. 47, 349–377.

    Google Scholar 

  • Garland, J. A.: 1983, ‘Some Recent Studies of the Resuspension of Deposited Material from Soil and Grass’, in H. R. Pruppacher, R. G. Semonin, and W. G. N. Slinn (eds.),Precipitation Scavenging, Dry Deposition and Resuspension, Vol. 2, Elsevier, Amsterdam, pp. 1087–1097.

    Google Scholar 

  • Garland, J. A. and Playford, K.: 1992, ‘Resuspension, Following the Chernobyl Accident’, in S. E. Schwartz and W. G. N. Slinn (eds.),Precipitation Scavenging and Atmosphere-Surface Exchange, Vol. 3, Hemisphere, Washington, pp. 1605–1614.

    Google Scholar 

  • Gillette, D. A.: 1978, ‘A Wind Tunnel Simulation of the Erosion of Soil: Effect of Soil Texture, Sandblasting, Wind Speed and Soil Consolidation on Dust Production’,Atmos. Env. 12, 1735–1743.

    Google Scholar 

  • Gillette, D. A., Adams, J., Endo, A., Smith, D. and Kihl, R.: 1980, ‘Threshold Velocities for Input of Soil Particles in the Air by Desert Soils’,J. Geophys. Res. 85, 5621–5630.

    Google Scholar 

  • Gillette, D. A., Adams, J., Muhs, D. and Kihl, R.: 1982, ‘Threshold Friction Velocities and Rupture Module for Crusted Desert Soils for the Input of Soil Particles into the Air’,J. Geophys. Res. 87(c11), 9003–9015.

    Google Scholar 

  • Goren, S. L.: 1970, ‘The Normal Force Exerted by Creeping Flow on a Small Sphere Touching a Plane’,J. Fluid Mech. 41, 619–625.

    Google Scholar 

  • Grass, A. J.: 1971, ‘Structural Features of Turbulent Flow over Smooth and Rough Boundaries’,J. Fluid Mech. 50, 233–255.

    Google Scholar 

  • Grass, A. J.: 1983, ‘The Influence of Boundary Layer Turbulence on the mechanics of Sediment Transport.’, B. M. Sumer and A. Müller (eds.),Euromech 156: Mechanics of Sediment Transport, Istanbul, pp. 3–17.

  • Gyr, A.: 1983, ‘Towards a Better Definition of the Three Types of Sediment Transport’,J. Hydraulic Res. 21, 1–15.

    Google Scholar 

  • Hall, D. and Reed, J.: 1989, ‘The Time Dependence of the Resuspension of Particles’,J. Aerosol Sci. 20, 839–842.

    Google Scholar 

  • Hinds, W. C.: 1982,Aerosol Technology, Wiley & Sons, New York, 424 pp.

    Google Scholar 

  • Ikeda, S. and Asaeda, T.: 1983, ‘Sediment Suspension with Rippled Bed’,J. Hydrol. Eng. 109, 409–423.

    Google Scholar 

  • Johnson, F. D. and Eckelmann, H.: 1984, ‘A Variable Angle Method of Calibration for X-Probes Applied to Wall-Bounded Turbulent Shear Flow’,Exp. Fluids 2, 121–130.

    Google Scholar 

  • Kline, S. J., Reynolds, W. C., Schraub, F. A. and Runstadler, P. W.: 1967, ‘The Structure of Turbulent Boundary Layers’,J. Fluid Mech. 30, 741.

    Google Scholar 

  • Kobashi, Y. and Ichijo, M.: 1986, ‘Wall Pressure and its Relation to Turbulent Structure of a Boundary Layer’,Exp. Fluids 4, 49–55.

    Google Scholar 

  • Liu, B. Y. H. and Kang-ho A.: 1987, ‘Particle Deposition on Semiconductor Wafers’,Aerosol Sci. Technol. 6, 215–224.

    Google Scholar 

  • Nicholson, K. W. and Branson, J. R.: 1992, ‘Atmosphere-Surface Exchange of Particulates in Built up Areas’, in S. E. Schwartz and W. G. N. Slinn (eds.),Precipitation Scavenging and Atmosphere-Surface Exchange, Vol. 2, Hemisphere, Washington, pp. 673–682.

    Google Scholar 

  • Nicholson, K. W.: 1988, ‘A Review of Particle, Resuspension’,Atmos. Environ. 22, 2639–2651.

    Google Scholar 

  • O'Neill, M. E.: 1968, ‘A Sphere in Contact with a Plane Wall in a Slow Linear Shear Flow’,Chem. Eng. Sci. 23, 1293–1298.

    Google Scholar 

  • Punjrath, J. S. and Heldman, D. R.: 1972, ‘Mechanisms of Small Particle Reentrainment from Flat Surfaces’,J. Aerosol Sci. 3, 429–440.

    Google Scholar 

  • Reeks, M. W., Reed, J., and Hall, D.: 1988 ‘On the Resuspension of Small Particles by a Turbulent Flow‘,J. Phys. D: Appl. Phys. 21, 574–589.

    Google Scholar 

  • Sehmel, G. A.: 1980, ‘Particle Resuspension: a Review’,Environ. Int. 4, 107–127.

    Google Scholar 

  • Sumer, B. M. and Deigaard, R.: 1981, ‘Particle Motions Near the Bottom in Turbulent Flow in an Open Channel’,J. Fluid Mech. 109, 311–337.

    Google Scholar 

  • Ungar, J. E. and Haff, P. K.: 1987, ‘Steady State Saltation in Air’,Sedimentology 34, 289–299.

    Google Scholar 

  • Wallace, J. M., Brodkey, R. S. and Eckelmann, H.: 1977, ‘Pattern-Recognized Structures in Bounded Turbulent Shear Flows’,J. Fluid Mech. 83, 673–693.

    Google Scholar 

  • Wen, H. Y. and Kasper, G.: 1989, ‘On the Kinetics of Particle Reentrainment from Surfaces’,J. Aerosol Sci. 20, 483–498.

    Google Scholar 

  • Werner, B. T. and Haff, P. K.: 1988, ‘The Impact Process in Eolian Saltation: Two Dimensional Simulations’,Sedimentology 35, 189–196.

    Google Scholar 

  • Willetts, B. B. and Rice, M. A.: 1988, ‘Particle Dislodgement from a Flat Sand Bed by Wind’,Earth Surface Processes and Landforms 13, 717–728.

    Google Scholar 

  • Willetts, B. B. and Rice, M. A.: 1989, ‘Collisions of Quartz Grains with a Sand Bed: Influence of Incidence Angle’,Earth Surface Processes and Landforms 14, 719–730.

    Google Scholar 

  • Zimon, A. D.: 1980,Adhesion of Dust and Power, Consultants Bureau, New York, 438 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braaten, D.A., Shaw, R.H. & Paw U, K.T. Boundary-layer flow structures associated with particle reentrainment. Boundary-Layer Meteorol 65, 255–272 (1993). https://doi.org/10.1007/BF00705529

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00705529

Keywords

Navigation