Skip to main content
Log in

Design criteria for water tank models of dispersion in the planetary convective boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Design criteria for laboratory water-analogs of clear-air penetrative convection in the atmosphere are described. Consideration is given to the range of factors relevant to modelling both turbulent penetrative convection and the dispersion of buoyant point-source plumes within the convective boundary layer. Scaling arguments based on mixed-layer and plume scaling show that at typical laboratory scales, saline convection can satisfy the requirements for modelling buoyant plume dispersion under strongly convective (light wind) conditions better than heated water tanks or wind tunnels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. J., Ferreira, R. T. D. S., and Boberg, T.: 1986. ‘Turbulent Thermal Convection in Wide Horizontal Fluid Layers’,Experiments in Fluids 4, 121–141.

    Google Scholar 

  • Arya, S. P. S.: 1982, ‘Atmospheric Boundary Layers over Homogeneous Terrain’, in E. Plate (ed.),Engineering Meteorology, Elsevier, Amsterdam, pp. 233–267.

    Google Scholar 

  • Arya, S. P. S. and Lape, J. F. Jr.: 1990, ‘A Comparative Study of the Different Criteria for the Physical Modeling of Buoyant Plume Rise in a Neutral Atmosphere’,Atmos. Environ. 24A, 289–295.

    Google Scholar 

  • Carson, D. J.: 1973, ‘The Development of a Dry Inversion-Capped Convectively Unstable Boundary Layer’,Quart. J. Roy. Meteorol. Soc. 99, 450–467.

    Google Scholar 

  • Caughey, S. J.: 1982, ‘Observed Characteristics of the Atmospheric Boundary Layer’, in F. T. M. Nieuwstadt and H. van Dop (eds.),Atmospheric Turbulence and Air Pollution Modelling, Reidel, pp. 107–158.

  • Caughey, S. J. and Palmer, S. G.: 1979. ‘Some Aspects of Turbulence Structure Through the Depth of the Convective Boundary Layer’,Quart. J. R. Meteorol. Soc. 105, 811–827.

    Google Scholar 

  • Cenedese, A. and Querzoli, G.: 1991, ‘A Laboratory Model of Turbulent Convection in the Atmospheric Boundary Layer’,Fifth International Workshop on Wind and Water Tunnel Modelling of Atmospheric Flow and Dispersion, 30 Oct–1 Nov, Stevenage, UK.

  • Deardorff, J. W.: 1970, ‘Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Rayleigh Convection’,J. Atmos. Sci. 27, 1211–1213.

    Google Scholar 

  • Deardorff, J. W.: 1979, ‘Prediction of Convective Mixed-Layer Entrainment for Realistic Capping Inversion Structure’,J. Atmos. Sci. 36, 424–436.

    Google Scholar 

  • Deardorff, J. W. and Willis, G. E.: 1967, ‘Investigation of Turbulent Thermal Convection Between Horizontal Plates’,J. Fluid Mech. 28, 675–704.

    Google Scholar 

  • Deardorff, J. W. and Willis, G. E.: 1974, ‘Computer and Laboratory Modeling of the Vertical Diffusion of Nonbuoyant Particles in the Mixed Layer’,Adv. Geophys. 18B, 187–200.

    Google Scholar 

  • Deardorff, J. W. and Willis, G. E.: 1975, ‘A Parameterization of Diffusion into the Mixed Layer’,J. Appl. Meteorol. 14, 1451–1458.

    Google Scholar 

  • Deardorff, J. W. and Willis, G. E.: 1984, ‘Groundlevel Concentration Fluctuations from a Buoyant and a Non-buoyant Source within a Laboratory Convectively Mixed Layer’,Atmos. Environ. 18, 1297–1309. See also discussion inAtmos. Environ. 19 (1985), 1210–1213.

    Google Scholar 

  • Deardorff, J. W. and Willis, G. E.: 1985, ‘Further Results From a Laboratory Model of the Convective Planetary Boundary Layer’,Boundary-Layer Meteorol. 32, 205–236.

    Google Scholar 

  • Deardorff J. W., Willis, G. E. and Lilly, D. K.: 1969, ‘Laboratory Investigation of Non-steady Penetrative Convection’,J. Fluid Mech. 35, 7–31.

    Google Scholar 

  • Deardorff, J. W., Willis, G. E. and Stockton, B. H.: 1980, ‘Laboratory Studies of the Entrainment Zone of a Convectively Mixed Layer’,J. Fluid Mech. 100, 41–64.

    Google Scholar 

  • Dörnbrack, A. and Schumann, U.: 1992, ‘Numerical Simulation of Turbulent Convective Shear Flow over Wavy Terrain’,Tenth Symposium on Turbulence and Diffusion, 29 Sep–2 Oct, Portland, Oregon, J76–J79.

  • Fitzjarrald, D. E.: 1978, ‘Horizontal Scales of Motion in Atmospheric Free Convection Observed during the GATE Experiment’,J. Appl. Meteorol. 17, 213–221.

    Google Scholar 

  • Garratt, J. R., Wyngaard, J. C. and Francey, R. J.: 1982, ‘Winds in the Atmospheric Boundary Layer-Prediction and Observation’,J. Atmos. Sci. 39, 1307–1316.

    Google Scholar 

  • Globe, S. and Dropkin, D.: 1959, ‘Natural-Convection Heat Transfer in Liquids Confined by Two Horizontal Plates and Heated from Below’,Trans. ASME, J. Heat Transfer 81, 24–28.

    Google Scholar 

  • Goldstein, R. J., Chaing, H. D. and See, D. L.: 1990, ‘High-Rayleigh-Number Convection in a Horizontal Enclosure’,J. Fluid Mech. 213, 111–126.

    Google Scholar 

  • Hadfield, M. G., Cotton, W. R. and Pielke, R. A.: 1991, ‘Large-Eddy Simulations of Thermally Forced Circulations in the Convective Boundary Layer. Part II: The Effects of Changes in Wavelength and Wind Speed’,Boundary-Layer Meteorol. 58, 307–327.

    Google Scholar 

  • Hicks, B. B.: 1985, ‘Behavior of Turbulence Statistics in the Convective Boundary Layer’,J. Clim. Appl. Meteorol. 24, 607–614.

    Google Scholar 

  • Hinze, J. O.: 1975,Turbulence, McGraw-Hill, 2nd edn., p. 225.

  • Hoult, D. P. and Weil J. C.: 1972, ‘Turbulent Plume in a Laminar Cross Flow’,Atmos. Environ. 6, 513–531.

    Google Scholar 

  • Kantha, L. H.: 1979, ‘Turbulent Entrainment at a Buoyancy Interface Due to Convective Turbulence’,NATO Conference on Fjord Oceanography, 205–213.

  • Kantha, L. H. and Long, R. R.: 1980, ‘Turbulent Mixing with Stabilizing Surface Buoyancy Flux’,Phys. Fluids 23, 2142–2143.

    Google Scholar 

  • Krishnamurti, R.: 1973, ‘Some Further Studies on the Transition to Turbulent Convection’,J. Fluid Mech. 60, 285–303.

    Google Scholar 

  • Kumar, R. and Adrian, R. J.: 1986, ‘Higher Order Moments in the Entrainment Zone of Turbulent Penetrative Thermal Convection’,Trans. ASME, J. Heat Transfer 108, 323–329.

    Google Scholar 

  • Lenschow, D. H. and Stankov, B. B.: 1986, ‘Length Scales in the Convective Boundary Layer’,J. Atmos. Sci. 43, 1198–1209.

    Google Scholar 

  • Melbourne, W. H., Taylor, T. J. and Grainger, C. F.: 1993, ‘Dispersion Modelling in Convective Wind Flows’,Atmos. Environ. (submitted).

  • Meroney, R. N. and Melbourne, W. H.: 1992, ‘Operating Ranges of Meteorological Wind Tunnels for the Simulation of Convective Boundary Layer (CBL) Phenomena’,Boundary-Layer Meteorol. 61, 145–174.

    Google Scholar 

  • Ohba, R., Kakishima, S. and Ito, S.: 1991, ‘Water Tank Experiment of Gas Diffusion From a Stack in Stably and Unstably Stratified Layers Under Calm Conditions’,Atmos. Environ. 25A, 2063–2076.

    Google Scholar 

  • Paulson, C. A.: 1970, ‘The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer’,J. Appl. Meteorol. 9, 857–861.

    Google Scholar 

  • Poreh, M. and Cermak, J. E.: 1984, ‘Wind Tunnel Simulation of Diffusion in a Convective Boundary Layer’,Boundary-Layer Meteorol.,30, 431–455.

    Google Scholar 

  • Poreh, M., Rau, M. and Plate, E. J.: 1991, ‘Design Considerations for Wind Tunnel Simulations of Diffusion within the Convective Boundary Layer’,Atmos. Environ. 25A, 1251–1256.

    Google Scholar 

  • Snyder, W. H.: 1972, ‘Similarity Criteria for the Application of Fluid Models to the Study of Air Pollution Meteorology’,Boundary-Layer Meteorol. 3, 113–134.

    Google Scholar 

  • Snyder, W. H.: 1981,Guideline for Fluid Modeling of Atmospheric Diffusion, EPA Report 600/8-81-009, US Environmental Protection Agency, Research Triangle Park, NC.

    Google Scholar 

  • Stull, R. B.: 1988,An Introduction to Boundary Layer Meteorology, Kluwer, Dordrecht, p. 455.

    Google Scholar 

  • Weil, J. C.: 1988, ‘Dispersion in the Convective Boundary Layer’, in A. Venkatram and J. C. Wyngaard (eds.),Lectures on Air Pollution Modeling, Am. Meteorol. Soc., Boston, 167–227.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1974, ‘A Laboratory Model of the Unstable Planetary Boundary Layer’,J. Atmos. Sci. 31, 1297–1307.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1976, ‘On the Use of Taylor's Translation Hypothesis for Diffusion in the Mixed Layer’,Quart. J. Roy. Meteorol. Soc. 102, 817–822.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1981, ‘A Laboratory Study of Dispersion from a Source in the Middle of the Convectively Mixed Layer’,Atmos. Environ. 15, 109–117.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1983, ‘On Plume Rise Within a Convective Boundary Layer’,Atmos. Environ. 17, 2435–2447. See also discussion inAtmos. Environ. 19 (1985), 1210–1213.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1987, ‘Buoyant Plume Dispersion and Inversion Entrapment In and Above a Laboratory Mixed Layer’,Atmos. Environ. 21, 1725–1735.

    Google Scholar 

  • Zilitinkevich, S. S.: 1991,Turbulent Penetrative Convection, Avebury Technical, Aldershot, U.K.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hibberd, M.F., Sawford, B.L. Design criteria for water tank models of dispersion in the planetary convective boundary layer. Boundary-Layer Meteorol 67, 97–118 (1994). https://doi.org/10.1007/BF00705509

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00705509

Keywords

Navigation