Skip to main content
Log in

A case study of the nocturnal boundary layer over a complex terrain

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A case study of the structure of the nocturnal boundary layer (NBL) over complex terrain is presented. Observations were made during the third night of Project STABLE (Weber and Kurzeja, 1991), whose main goal was to study turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia.

The passage of a mesoscale phenomenon, defined as a turbulent meso-flow (TMF) with an explanation of the nomenclature used, and a composite structure of the lowest few hundred meters over complex terrain are presented. The spatial extent of the TMF was at least 30–50 km, but the forcing is not well understood. The TMF occurred without the presence of a synoptic-scale cold front, under clear conditions, and with no discernible discontinuity in a microbarograph pressure trace. The structure of the NBL over the complex terrain at SRS differed from the expected homogeneous terrain NBL. The vertical structure exhibited dual low level wind maxima, dual inversions, and a persistent elevated turbulent layer.

The persistent elevated turbulent layer, with a spatial extent of at least 30 km, was observed for the entire night. The persistent adiabatic layer may have resulted from turbulence induced by shear instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arya, S. P. S.: 1988,Introduction to Micrometeorology, Academic Press, Inc., New York. 307 pp.

    Google Scholar 

  • Caughey, S. J., Wyngaard, J. C. and Kaimal, J. C.: 1979, ‘Turbulence in the Evolving Stable Boundary Layer’,J. Atmos. Sci. 36, 1041–1052.

    Google Scholar 

  • Hunt, J. C. R., Kaimal, J. C., Gaynor, J. E. and Korrell, A.: 1983, ‘Observations of Turbulence Structure in Stable Layers at the Boulder Atmospheric Observatory’, in J. C. Kaimal (ed.),Studies of Nocturnal Stable Layers at BAO. Report # 4, NOAA/ERL Boulder, Colorado. 129 pp.

  • Kurzeja, R. J., Berman, S. and Weber, A. H.: 1991, ‘A Climatological Study of the Nocturnal Planetary Boundary Layer’,Boundary-Layer Meteorol. 54, 105–128.

    Google Scholar 

  • Mahrt, L.: 1989, ‘Intermittency of Atmospheric Turbulence’,J. Atmos. Sci. 46, 79–95.

    Google Scholar 

  • Schaefer, J. T., Hoxit, L. R. and Chappell, C. F.: 1986, ‘Thunderstorms and Their Mesoscale Environment’, in E. Kessler (ed.),Thunderstorm Morphology and Dynamics, University of Oklahoma Press, Norman, OK 411 pp.

    Google Scholar 

  • SethuRaman, S.: 1977, ‘The Observed Generation and Breaking of Atmospheric Internal Gravity Waves Over the Ocean’,Boundary-Layer Meteorol. 12, 331–349.

    Google Scholar 

  • SethuRaman, S.: 1980, ‘A Case of Persistent Breaking of Internal Gravity Waves in the Atmospheric Surface Layer Over the Ocean’Boundary-Layer Meteorol. 19, 67–80.

    Google Scholar 

  • Stull, R. B.: 1988,An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Boston. 665 pp.

    Google Scholar 

  • Weber, A. H., and Kurzeja, R. J.: 1991, ‘Nocturnal Planetary Boundary Layer Structure and Turbulence Episodes During the Project STABLE Field Program’,J. Appl. Meteorol. 30, 1117–1133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, M.J., Raman, S. A case study of the nocturnal boundary layer over a complex terrain. Boundary-Layer Meteorol 66, 303–324 (1993). https://doi.org/10.1007/BF00705480

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00705480

Keywords

Navigation