Skip to main content
Log in

Some aspects of determining the stable boundary layer depth from sodar data

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The question of estimating the height of the stable boundary layer (SBL) based on digitalized vertical profiles of sodar signal intensity has been re-examined. A simple one-dimensional numerical boundary-layer model is used to compute vertical profiles of the temperature structure parameterC 2T . It is shown that especially at the beginning of the night (when stratification is weak) one can not expect any significant profile structure in the upper part of the SBL if its depth is determined in terms of common turbulent height scales. From this it is concluded that the SBL-height will be underestimated early in the night when derived from the maximum gradient in the signal intensity profiles. Later in the night in contrast, the computations often show elevated maxima or even zones with reduced, and above them enhanced, vertical gradients ofC 2T , from which a SBL-height can be deduced that compares well with other common height scales. The computed profiles ofC 2T are shown to be in qualitative agreement with observed profiles of sodar signal intensity for several analysed cases from the HAPEX-MOBILHY experiment.

Comparing different SBL-depth scales with sodar observations, it is demonstrated that most of them are often closely related to a sodar-derived SBL-height only during certain phases of the night. Thus the ‘sodar-SBL-height’ can, after a transition period, be perhaps associated with the lower turbulent layer of the growing surface inversion during the first part and with the height of the low-level wind maximum during the second part of the night.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, J. C.: 1983, ‘On the Variability of the Nocturnal Boundary Layer Depth’,J. Atmos. Sci. 40, 2309–2311.

    Google Scholar 

  • André, J. C., G. De Moor, P. Lacarrère, G. Therry and R. Du Vachat: 1978, ‘Modeling the 24-hour Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer’,J. Atmos. Sci. 35, 1861–1883.

    Google Scholar 

  • André, J. C. and L. Mahrt: 1982, ‘The Nocturnal Surface Inversion and Influence of Clear-Air Radiative Cooling’,J. Atmos. Sci. 39, 864–878.

    Google Scholar 

  • André, J. C., J. P. Goutorbe and A. Perrier: 1986, ‘HAPEX-MOBILHY: A Hydrologic Atmospheric Experiment for the Study of Water Budget and Evaporation Flux at the Climatic Scale’,Bull. Amer. Meteorol. Soc. 67, 138–144.

    Google Scholar 

  • Arya, S. P. S.: 1981, ‘Parameterizing the Height of the Stable Atmospheric Boundary Layer’,J. Appl. Meteorol. 20, 1192–1202.

    Google Scholar 

  • Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulence Exchange in a Neutral Atmosphere,J. Geophys. Res. 67, 3095–3102.

    Google Scholar 

  • Brost, R. A. and J. C. Wyngaard: 1978, ‘A Model Study of the Stably Stratified Planetary Boundary Layer’,J. Atmos. Sci. 35, 1427–1440.

    Google Scholar 

  • Caughey, S. J., J. C. Wyngaard and J. C. Kaimal: 1979, ‘Turbulence in the Evolving Stable Boundary Layer’,J. Atmos. Sci. 36, 1041–1052.

    Google Scholar 

  • Corrsin, S.: 1951, ‘On the Spectrum of Temperature Fluctuations in an Isotropic Turbulence Field’,J. Appl. Phys. 22, 417–423.

    Google Scholar 

  • Coulman, C. E., J. C. André, P. Lacarrère and P. R. Gillingham: 1986, ‘The Observations, Calculation, and Possible Forecasting of Astronomical Seeing’Publ. Astron. Soc. Pacif. 98, 376–387.

    Google Scholar 

  • Coulter, R. L.: 1990, ‘A Case Study of Turbulence in the Stable Nocturnal Boundary Layer’Boundary-Layer Meteorol. 52, 75–91.

    Google Scholar 

  • Cuijpers, J. W. M. and W. Kohsiek: 1989, ‘Vertical Profiles of the Structure Parameter of Temperature in the Stable, Nocturnal Boundary Layer’,Boundary-Layer Meteorol. 47, 111–129.

    Google Scholar 

  • Dörnbrack, A.: 1989, ‘Approximative Berechnung turbulenter Flüsse und des Tensors der turbulenten Diffusion auf der Grundlage einer algebraisch approximierten Schließung 2. Ordnung’,Ph.D., Humboldt-Univ. Berlin, 138 pp. (in German).

  • Dupont, E.: 1991, ‘Étude Méthodologique et Expérimentale de la Couche Limite Atmosphérique par Télédetéction Laser’, Ph.D. Univ. Paris, 220 pp. (in French).

  • Estournel, C.: 1988, ‘Étude de la Phase Nocturne de la Couche Limite Atmosphérique’,Ph.D. Univ. P. Sabatier Toulouse, 161 pp. (in French).

  • Garratt, J. R. and R. A. Brost: 1981, ‘Radiative Cooling Effects Within and Above the Nocturnal Boundary Layer’,J. Atmos. Sci. 38, 2730–2746.

    Google Scholar 

  • Goutorbe, J. P.: 1991, ‘A Critical Assessment of the SAMER-Network Accuracy’, in: T. J. Schmugge and J. C. André (Eds.):Land Surface Evaporation — Measurement and Parameterization. New York — Berlin — Heidelberg: Springer Verlag, 171–182.

    Google Scholar 

  • Hayashi, M.: 1980, ‘Acoustic Sounding of the Lower Atmospheric Inversion Layer’,J. Meteorol. Soc. Jap. 58, 194–201.

    Google Scholar 

  • Koracin, D. and R. Berkowicz: 1988, ‘Nocturnal Boundary Layer Height: Observations by Acoustic Sounders and Prediction in Terms of Surface Layer Parameters’,Boundary-Layer Meteorol. 43, 65–83.

    Google Scholar 

  • Laichtman, D. L. (Ed.): 1976, ‘Dinamicheskaya Meteorologiya’, (in Russian),Leningrad: Gidrometeoizdat, 608 pp.

    Google Scholar 

  • Mahrt, L., R. C. Heald, D. H. Lenschow, B. B. Stankov and Ib Troen: 1979, ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’,Boundary-Layer Meteorol. 17, 247–264.

    Google Scholar 

  • Marzorati, A., G. Mastrantonio and G. Fiocco: 1988, ‘Criteria for the Automatic Classification of Micrometeorological Situations by the Analysis of Sodar Intensity Profiles’,Proc. 4th Internat. Symp. Acoust. Remote Sensing, Canberra, 9(1–8).

  • Mason, P. J. and S. H. Derbyshire: 1990, ‘Large Eddy Simulation of the Stably Stratified Atmospheric Boundary Layer’,Boundary-Layer Meteorol. 53, 117–162.

    Google Scholar 

  • Mellor, G. L. and T. Yamada: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’,Rev. Geophys. Space Phys. 20, 851–875.

    Google Scholar 

  • Neff, W. D. and R. L. Coulter: 1986, ‘Acoustic Remote Sensing’, in: D. H. Lenschow (Ed.):Probing the Atmospheric Boundary Layer. AMS Boston, 201–236.

  • Nieuwstadt, F. T. M. and A. G. M. Driedonks: 1979, ‘The Nocturnal Boundary Layer — A Case Study Compared With Model Calculations’J. Appl. Meteorol. 18, 1397–1405.

    Google Scholar 

  • Noilhan, J., P. Lacarrère and P. Bougeault: 1991, ‘An Experiment with an Advanced Surface Parameterization in a Meso-β-Scale Model. Part III: Comparison with the HAPEX-MOBILHY Data Set’,Mon. Wea. Rev. 119, 2393–2413.

    Google Scholar 

  • Pekour, M. S.: 1990, ‘Opredelenije parametrov vysoty sloya peremeshivaniya po faksimilnym zapisyam ekho-zignala sodara’ (in Russian)Proc. Seminar IAP of the Acad. of Sci. of the USSR Moscow, 15–29.

  • Piringer, M.: 1988, ‘The Determination of Mixing Heights by Sodar in an Urban Environment’, in: K Grefen and J. Löbel (Eds.),Environmental Meteorology. Dordrecht-Boston-London, Kluwer Acad. Publ., 425–444.

    Google Scholar 

  • Singal, S. P.: 1990, ‘Current Status of Air Quality Related Boundary Layer Meteorological Studies Using Sodar’, in: S. P. Singal (Ed.),Acoustic Remote Sensing. New Delhi, Tata McGraw-Hill, 453–476.

    Google Scholar 

  • Singal, S. P. and S. K. Aggarwal: 1979, ‘Sodar and Radiosonde Studies of Thermal Structure of the Lower Atmosphere at Delhi’,Ind. J. Radio Space Phys. 8, 76–81.

    Google Scholar 

  • Sorbjan, Z.: 1986, ‘Local Similarity of Spectral and Cospectral Characteristics in the Stable Continuous Boundary Layer’,Boundary-Layer Meteorol. 35, 257–275.

    Google Scholar 

  • Tjemkes, S. A. and P. G. Duynkerke: 1989, ‘The Nocturnal Boundary Layer: Model Calculations Compared with Observations’,J. Appl. Meteorol. 28, 161–175.

    Google Scholar 

  • Weill, A., M. Blez and F. Leca: 1987, ‘Gravity Waves and Horizontal Mixing in the Atmospheric Boundary Layer’,Ann. Geophys. 5B, 413–420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyrich, F., Weill, A. Some aspects of determining the stable boundary layer depth from sodar data. Boundary-Layer Meteorol 63, 97–116 (1993). https://doi.org/10.1007/BF00705378

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00705378

Keywords

Navigation