Skip to main content
Log in

Structure and properties of ceramic fibers prepared from organosilicon polymers

  • Symposium Review
  • Published:
Journal of Inorganic and Organometallic Polymers Aims and scope Submit manuscript

Abstract

This paper is a review of structure and properties of ceramic fibers derived from organosilicon polymers, with emphasis on the author's research. Ceramic fibers are prepared from organosilicon polymers by melt-spinning, cross-linking, and pyrolysis. Desirable polymeric precursors display the following properties: high char yield of desired composition, thermal stability at melt-spinning temperature, stable rheology, high purity and freedom from particulate impurities, and ability to undergo rapid cure (cross-linking). Ceramic fibers in the Si-C-O or Si-C-N-O systems display a rich nanostructure consisting of some or all of the following metastable phases: (1) an amorphous, continuous siliconoxycarbide or siliconoxycarbonitride phase; (2) dispersed carbon nanocrystallites; (3) dispersed β-SiC or Si3N4 nanocrystallites; and (4) closed, globular nanopores. The crystalline phases increase in volume fraction and crystallite size as stoichiometry approaches the crystalline composition and as pyrolysis temperature increases. The Si-C-N-O fibers are amorphous. Pore size increases and total pore volume decreases with increasing pyrolysis temperature. Considerable variation in ceramic fiber composition can be achieved by varying cure conditions and pyrolysis atmosphere. Polycrystalline SiC fibers can be produced by pyrolysis above 1600°C. Fiber diameters range from 7 to 20 µm. Elastic moduli vary from 140 to >420 GPa (20 to >60 Msi) and are controlled by composition, nanostructure, and fiber density. Fiber densities range from ∼2.2 to >3.1 g/cm3. Tensile strengths range up to ∼5 GPa (700 ksi) and are Griffith flaw-controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Larsen and S. L. Stuchly, inFiber Reinforced Ceramic Composites, K. S. Mazdiyasni, ed. (Noyes, Park Ridge, NJ, 1990), pp. 182–221.

    Google Scholar 

  2. T. Mah, M. G. Mendiratta, A. P. Katz, and K. S. Mazdiyasni,Am. Ceram. Soc. Bull. 66, 304–308, 317 (1987).

    Google Scholar 

  3. R. Baney and G. Chandra, inEncyclopedia of Polymer Science and Engineering, Vol. 13, 2nd ed. (Wiley, New York, 1988), pp. 312–344.

    Google Scholar 

  4. N. R. Langley, G. E. LeGrow, and J. Lipowitz, inFiber Reinforced Ceramic Composites, K. S. Mazdiyasni, ed. (Noyes, Park Ridge, NJ, 1990), pp. 63–92.

    Google Scholar 

  5. R. M. Salinger, T. D. Barnard, C. T. Li, and L. G. Mahone,SAMPE Q. 19(3), 27 (1988).

    Google Scholar 

  6. S. Yajima,Am. Ceram. Soc. Bull. 62, 893 (1983).

    Google Scholar 

  7. S. Yajima, T. Iwai, T. Yamamura, K. Okamura, and Y. Hasegawa,J. Mater Sci. 16, 1349 (1981).

    Google Scholar 

  8. S. Yajima, K. Okamura, Y. Hasegawa, and T. Yamamura, U.S. Patents 4,359,559 (1982); 4,347,347 (1982); 4,515,742 (1985); 4,336,215 (1982).

  9. J. P. Cannady, U.S. Patents 4,535,007 and 4,540,803 (1985).

  10. G. E. LeGrow, T. F. Lim, J. Lipowitz, and R. S. Reaoch,Am. Ceram. Soc. Bull. 66, 363 (1987).

    Google Scholar 

  11. J. Gaul, Jr., U.S. Patents 4,312,970 and 4,340,619 (1982).

  12. R. H. Baney, inUltrastructure Processing of Ceramics, Glasses, and Composites, L. L. Hench and D. R. Ulrich, eds. (Wiley, New York, 1984), pp. 245–255.

    Google Scholar 

  13. J. Lipowitz, N. Langley, G. LeGrow, and T. Lim,Ceram. Eng. Sci. Proc. 9, 931 (1988).

    Google Scholar 

  14. L. G. Mahone, U.S. Patent 4,772,516 (1988).

  15. K. Okamura, M. Sato, T. Matsuzawa, T. Seguchi, and S. Kawanishi,Ceram. Eng. Sci. Proc. 9, 909 (1988).

    Google Scholar 

  16. K. Okamura, M. Sato, and Y. Hasegawa,Ceram. Int. 13, 55 (1987).

    Google Scholar 

  17. J. A. Rabe and D. R. Bujalski, U.S. Patent 4,761,389 (1988).

    Google Scholar 

  18. J. Lipowitz and J. A. Rabe, Unpublished data.

  19. J. Lipowitz, H. A. Freeman, R. T. Chen, and E. R. Prack,Adv. Ceram. Mater. 2, 121 (1987).

    Google Scholar 

  20. J. Lipowitz and G. L. Turner,Polymer Preprints 29, 74 (1988);Solid State NMR of Polymers, L. J. Mathias, ed. (Plenum, New York), in press.

    Google Scholar 

  21. T. Taki, S. Maeda, K. Okamura, M. Sato, and T. Matsuzawa,J. Mater Sci. Lett. 6, 826 (1987).

    Google Scholar 

  22. V. S. R. Murthy, M. H. Lewis, M. E. Smith, and R. Dupree,Mater. Lett. 8, 263 (1989).

    Google Scholar 

  23. V. Belot, R. J. P. Corriu, D. LeClercq, P. H. Mutin, and A. Vioux,J. Mater Sci. Lett. 9, 1052 (1990).

    Google Scholar 

  24. J. Lipowitz, J. A. Rabe, and L. K. Frevel,J. Mater Sci. 25, 2118 (1990).

    Google Scholar 

  25. F. G. Rumscheidt and S. G. Mason,J. Colloid Sci. 17, 260 (1962).

    Google Scholar 

  26. H. S. Starrett, Unpublished observations, Southern Research Institute, Birmingham, AL.

  27. Y. W. Chang, A. Zangvil, and J. Lipowitz,Ceram. Trans. Silicon Carbide '87 2, 435 (1989).

    Google Scholar 

  28. L. C. Sawyer, inFiber Reinforced Ceramic Fibers, K. S. Mazdiyasni, ed. (Noyes, Park Ridge, NJ, 1990), pp. 141–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This review is from the Second International Topical Workshop, “Advances in Silicon-Based Polymer Science.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipowitz, J. Structure and properties of ceramic fibers prepared from organosilicon polymers. J Inorg Organomet Polym 1, 277–297 (1991). https://doi.org/10.1007/BF00702494

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00702494

Key words

Navigation