Skip to main content
Log in

Interstellar dust, chirality, comets and the origins of life: Life from dead stars?

  • Section 2. Membrane Formation In Planetary, Extraterrestrial And Interstellar Conditions
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The physical, chemical and astrophysical processes by which chiral prebiotic molecules can be produced in interstellar dust and later delivered “safely” to the earth are considered. A laboratory analog experiment on the irradiation by circularly polarized UV light of mirror image molecules at the low temperatures of interstellar dust demonstrates that a substantial degree of chirality can be produced by irradiation of the dust by circularly polarized light from pulsars whose mean brightness and distribution in the Milky Way provide the energetic photons. The chirality is then preserved by cold aggregation of the dust into low density fragile nuclei. The thermal evolution of comets following them from birth through billions of years in the Oort cloud and back to the inner solar system results in preservation of dust organics in largely pristine form — even including effects of radiogenic heating. Physical justification for the cushioned transfer of fragments of the fluffy comets impacting the earth's atmosphere provides a conceptual basis for depositing significant concentrations of interstellar prebiotic molecules. Chiral amplification in water on the earth is presumed to be enhanced by this local concentration. If chiral molecules are discovered in comet nucleus material which will some day be returned to the laboratory, we may have in our hands the same building blocks from which we evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V.K. Agarwal, W. Schutte, J.M. Greenberg, J.P. Ferris, R. Briggs, S. Conner, C.E.P.M. v.d. Bult, F. Baas, Origins of Life 16 (1986) 21.

    Google Scholar 

  • W.A. Bonner, Origins of Life and Evolution of the Biosphere 11 (1991) 59.

    Google Scholar 

  • W.A. Bonner, F.Rubinstein, in: Prebiological Self Organization of Matter, eds. C. Ponnamperuma, F.R. Eirich, 1990, p. 35.

  • R. Briggs, G. Ertem, J.P. Ferris, J.M. Greenberg, P.J. McCain, C.X. Mendoza-Gómez, W. Schutte, Origins of Life and Evolution of the Biosphere 22 (1992) 287.

    Google Scholar 

  • C.F. Chyba, Nature 343 (1990) 129.

    Google Scholar 

  • C.F. Chyba, C. Sagan, Nature 355 (1992) 125.

    Google Scholar 

  • C.F. Chyba, P.J. Thomas, L. Brookshaw, C. Sagan, Science 249 (1990) 366.

    Google Scholar 

  • B.C. Clark, Origins of Life and Evolution of the Biosphere 18 (1988) 209.

    Google Scholar 

  • J. Cronin, 1992, private communication.

  • J.M. Greenberg, in: Cosmic Dust, ed. J.A.M. McDonnell, Wiley, 1978, p. 187.

  • J.M. Greenberg, in: Comets and the Origin of Life, ed. C. Ponnamperuma, Reidel, Dordrecht, 1980, p. 111.

    Google Scholar 

  • J.M. Greenberg, in: Comets, ed. L.L. Wilkening, Un. of Arizona Press, 1982, p. 131.

  • J.M. Greenberg, in: Cosmochemistry and the Origin of Life, ed. C. Ponnamperuma, Kluwer, Boston, 1983, p. 71.

    Google Scholar 

  • J.M. Greenberg, Structure and evolution of interstellar grains, Scient. Amer. 250 (1984) nr. 6, 125.

    Google Scholar 

  • J.M. Greenberg, in: The Galaxy and the Solar System, eds. R. Smoluchowski, J.N. Bahcall, M.S. Matthews, Un. of Arizona Press, 1986, p. 103.

  • J.M. Greenberg, J.I. Hage, Astrophys. J. 361 (1990) 260.

    Google Scholar 

  • J.M. Greenberg, C.X. Mendoza-Gómez, The seeding of life by cometsAdv. Space Res. 12 (1992) nr. 4, 169.

    Google Scholar 

  • E. Gruen et al, Nature 362 (1993) 428.

    Google Scholar 

  • W. Hagen, L.J. Allamandola, J.M. Greenberg, Astroph. Space Sci. 65 (1979) 215.

    Google Scholar 

  • J. Haruyama, T. Yamamoto, H. Mizutani, J.M. Greenberg, J. Geophys. Res. E8 (1993) 15.079–15.090.

    Google Scholar 

  • W. Hermsen et al, Astrophys. J. Suppl. 92 (1994) 559.

    Google Scholar 

  • H.B. Kagan, G. Balavoine, A. Moradpour, J. Mol. Evol. 4 (1974) 41.

    Google Scholar 

  • J. Kissel, F.R. Krueger, Nature 326 (1987) 755

    Google Scholar 

  • A. Kouchi, J.M. Greenberg, T. Yamamoto, T. Mukai, Astrophys. J. 388 (1992) L73.

  • J.N. Marcus, M.A. Olsen, in: Comets in the Post Halley Era, eds. R. Newburn et al., Kluwer, Dordrecht, 1990, p. 439.

    Google Scholar 

  • C. X. Mendoza-Gómez, Ph.D. Thesis, Leiden, 1992.

  • M.J. Mumma, S.A. Stern, P.R. Weissman, in: Planets and Protostars, III, eds. E.H. Levy, J.J. Lunine, M.S. Matthews, Un. of Arizona press, 1992, p. 1177.

  • L. Orgel, Quant. Bio. 52 (1987) 9.

    Google Scholar 

  • J. Oro, Nature 190 (1961) 389.

    Google Scholar 

  • H. Rickman, Adv. Space Res. 9 (1989) nr. 3, 59.

    Google Scholar 

  • G. Wald, Ann. N.Y. Acad. Sci. 69 (1957) 353.

    Google Scholar 

  • A.L. Weber, Origins of Life 19 (1989) 317.

    Google Scholar 

  • Ya.B. Zeldovich, Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Academic Press, New York, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenberg, J.M., Kouchi, A., Niessen, W. et al. Interstellar dust, chirality, comets and the origins of life: Life from dead stars?. J Biol Phys 20, 61–70 (1995). https://doi.org/10.1007/BF00700421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00700421

Keywords

Navigation