Skip to main content
Log in

Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

We describe a fast response methane sensor based on the absorption of radiation generated with a near-infrared InGaAsP diode laser. The sensor uses an open path absorption region 0.5 m long; multiple pass optics provide an optical path of 50 m. High frequency wavelength modulation methods give stable signals with detection sensitivity (S/N=1, 1 Hz bandwidth) for methane of 65 ppb at atmospheric pressure and room temperature. Improvements in the optical stability are expected to lower the current detection limit. We used the new sensor to measure, by eddy correlation, the CH4 flux from a clay-capped sanitary landfill. Simultaneously we measured the flux of CO2 and H2O. From seven half-hourly periods of data collected after a rainstorm on November 23, 1991, the average flux of CH4 was 17 mmol m−2 hr−1 (6400 mg CH4 m−2 d−1) with a coefficient of variation of 25%. This measurement may underrepresent the flux by 15% due to roll-off of the sensor response at high frequency. The landfill was also a source of CO2 with an average flux of 8.1 mmol m−2 hr−1 (8550 mg CO2 m−2 d−1) and a coefficient of variation of 26%. A spectral analysis of the data collected from the CH4, CO2, and H2O sensors showed a strong similarity in the turbulent transfer mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, D. W., 1966, Statistics of atomic frequency standards, Proc. IEEE54, 221–230.

    Google Scholar 

  • Anderson, S. M. and Zahniser, M. S., 1991, Open-path tunable diode laser absorption for eddy correlation flux measurements of atmospheric trace gases, in H. I. Schiff (ed.),Measurement of Atmospheric Gases, Proc. SPIE 1433, 167–178.

  • Arndt, R., 1965, Analytical line shapes for Lorentzian signals broadened by modulation,J. Appl. Phys. 36, 2522–2524.

    Google Scholar 

  • Auble, D. L. and Meyers, T. P., 1992, An open path, fast response infrared absorption gas analyzer for H2O and CO2,Boundary-Layer Meteorol. 59, 243–256.

    Google Scholar 

  • Baldocchi, D. D., Hicks, B. B., and Meyers, T. P., 1988, Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods,Ecology 69 (5), 1331–1340.

    Google Scholar 

  • Bingemer, H. G. and Crutzen, P. J., 1987, The production of methane from soil wastes,J. Geophys. Res. 92(D2), 2181–2187.

    Google Scholar 

  • Bobin, B., 1972, Interpretation de la bande harmonique 2v 3 du methane12CH4 (de 5890 a 6107 cm−1),J. Physique 33, 345–352.

    Google Scholar 

  • Bogner, J. E. and Vogt, M. C., 1991, Methane emissions from sanitary landfills, Argonne National Laboratory, Argonne, Illinois, NTIS Document No. DE91-010652.

  • Bomse, D. S., Stanton, A. C. and Silver, J. A., 1992, Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,Appl. Opt. 31, 718–731.

    Google Scholar 

  • Bomse, D. S., 1991, Dual-modulation laser line-locking scheme,Appl. Opt. 30, 2922–2924.

    Google Scholar 

  • Businger, J. A., 1986, Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques,J. Climate Appl. Meteorol. 25, 1100–1124.

    Google Scholar 

  • Cassidy, D. T. and Reid, J., 1982, Harmonic detection with tunable diode lasers — two-tone modulation,Appl. Phys. B. 29, 279–285.

    Google Scholar 

  • Cicerone, R. J. and Oremland, R. S., 1988, Biogeochemical aspects of atmospheric methane,Global Biogeochem. Cycles 2, 299–328.

    Google Scholar 

  • Cooper, D. E. and Carlisle, C. B., 1988, High sensitivity FM spectroscopy with a lead-salt diode laser,Opt. Lett. 13, 719–721.

    Google Scholar 

  • Crutzen, P. J., 1991, Methane's sinks and sources,Nature 350, 380–381.

    Google Scholar 

  • Darnton, L. and Margolis, J. S., 1973, The temperature dependence of the half widths of some self-and foreign-gas-broadened lines of methane,J. Quant. Spectrosc. Radiat. Transfer 13, 969–976.

    Google Scholar 

  • Fan, S. M., Wofsy, S. C., Bakwin, P. S., Jacob, D. J., Anderson, S. M., Kebabian, P. L., McManus, J. B., and Kolb, C. E., 1992, Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra,J. Geophys. Res. 97, 16,627–16,643.

    Google Scholar 

  • Fox, K., Halsey, G. W., Daunt, S. J., Blass, W.E., and Jennings, D. E., 1980, Anomalous13CH4:12CH4 line strengths in 2v 3,J. Chem. Phys. 72, 4657–4659.

    Google Scholar 

  • Herriott, D. R., Kogelnik, H., and Kompfner, R., 1964, Off-axis paths in spherical mirror interferometers,Appl. Opt. 3, 523–526.

    Google Scholar 

  • Hastie, D. R., Mackay, G. I., Iguchi, T., Ridley, B. A., Schiff, H. I., 1983, Tunable diode laser systems for measuring trace gases in tropospheric air,Environ. Sci. and Technol. 17, 352A-364A.

    Google Scholar 

  • Hicks, B. B., Matt, D. R., and McMillen, R. T., 1989, A micrometeorological investigation of surface exchange of O3, SO2 and NO2: A case study,Boundary-Layer Meteorol. 47, 321–336.

    Google Scholar 

  • Kaimal, J. C., Gaynor, J. E., Zimmerman, H. A., and Zimmerman, G. A., 1990, Minimizing flow distortion errors in a sonic anemometer,Boundary-Layer Meteorol. 53, 103–115.

    Google Scholar 

  • Khalil, M. A. K. and Rasmussen, R. A., 1990, Constraints on the global sources of methane and an analysis of recent budgets,Tellus 42B, 229–236.

    Google Scholar 

  • Lenschow, D. and Kristensen, L., 1985, Uncorrelated noise in turbulence measurements,J. Atmos. Ocean. Tech. 2, 68–81.

    Google Scholar 

  • Lubken, F.-J., Eng, R., Karecki, D. R., Mackay, G. I., Nadler, S., and Schiff, H. I., 1991, The effect of water vapour broadening on methane eddy correlation flux measurements,J. Atmos. Chem. 13, 97–108.

    Google Scholar 

  • Margolis, J. S., 1973, Line strength measurements of the 2v 3 band of methane,J. Quant. Spectrosc. Radiat. Transfer 13, 1097–1103.

    Google Scholar 

  • McManus, J. B., Kebabian, P. L., and Kolb, C. E., 1989, Atmospheric methane measurement instrument using a Zeeman-split He-Ne laser,Appl. Opt. 28, 5016–5023.

    Google Scholar 

  • Mohebati, A. and King, T. A., 1988, Remote detection of gases by diode laser spectroscopy,J. Mod. Optics 35, 319–324.

    Google Scholar 

  • Moore, T. R. and Roulet, N. T., 1991, A comparison of dynamic and static chambers from methane emission measurements from subarctic fens,Atmosphere-Ocean 29(1), 102–109.

    Google Scholar 

  • Moore, T. R. and Knowles, R., 1990, Methane emissions from fen, bog, and swamp peatlands in Quebec,Biogeochemistry 11, 45–61.

    Google Scholar 

  • Moore, C. J., 1986, Frequency response corrections for eddy correlation systems,Boundary-Layer Meteorol. 37, 17–35.

    Google Scholar 

  • Ritter, J. A., Lenschow, D., Barrick, J. D. W., Gregory, G., Sachse, G. W., Hill, G., and Woerner, M., 1990, Airborne flux measurements and budget estimates of trace species of the Amazon Basin during the GTE/ABLE 2B Expedition,J. Geophys. Res. 95, 16,785–16,886.

    Google Scholar 

  • Ritter, J. A., Barrick, J. D. W., Sachse, G. W., Hill, G. F., Gregory, G. L., Woerner, M. A., and Watson, C. E., 1992, Airborne flux measurements of trace gas species in an Arctic boundary layer,J. Geophys. Res. 97, 16601.

    Google Scholar 

  • Sachse, G. W., Collins, J. E. Jr., Hill, G. F., Wade, L. O., Burney, L. G., and Ritter, J. A., 1991, Airborne tunable diode laser sensor for high-precision concentration and flux measurements of carbon monoxide and methane, in H. I. Schiff (ed.),Measurement of Atmospheric Gases, Proc. SPIE 1433, 157–166.

  • Sarangi, S. and Varanasi, P., 1974, Measurement of intensities of multiplets in the 2v 3-band of methane at low temperatures,J. Quant. Spectrosc. Radiat. Transfer 14, 365–376.

    Google Scholar 

  • Sass, R. L., Fisher, F. M., and Harcombe, P. A., 1990, Methane production and emission in a Texas rice field,Global Biogeochemical Cycles,4(1), 47–68.

    Google Scholar 

  • Schuepp, P. H., Leclerc, M. L., MacPherson, J. I., and Desjardins, R. L., 1990, Footprint predictions of scalar fluxes from analytical solutions of the diffusion equation,Boundary-Layer Meteorol. 50, 355–373.

    Google Scholar 

  • Senior, E. and Kasali, G. B., 1990, Landfill gas, in E. Senior (ed.),Microbiology of Landfill Sites, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Shimose, Y., Okamoto, T., Maruyama, A., Aizawa, M., and Nagai, H., 1991, Remote sensing of methane gas by differential absorption using a wavelength tunable DFB LD,IEEE Photon. Technol. Lett. 3, 86–87.

    Google Scholar 

  • Silver, J. A. and Stanton, A. C., 1988, Optical interference fringe reduction in laser absorption experiments,Appl. Opt. 27, 1914–1917.

    Google Scholar 

  • Silver, J. A., 1992, Frequency-modulation spectroscopy for trace species detection: Theory and comparison among experimental methods,Appl. Opt. 31, 707–717.

    Google Scholar 

  • Stanton, A. C. and Hovde, D. C., 1992,Laser Focus World, August issue, 117–120.

  • Tohjima, Y. and Wakita, H., 1993, Estimation of methane discharge from a plume: A case of landfill,Geophys. Res. Lett. 20, 2067–2070.

    Google Scholar 

  • Uehara, K. and Tai, H., 1992, Remote detection of methane with a 1.66 µm diode laser,Appl. Opt. 31, 809–814.

    Google Scholar 

  • Varanasi, P., 1971, Collision-broadened half-widths and shapes of methane lines,J. Quant. Spectrosc. Radiat. Transfer 11, 1711–1724.

    Google Scholar 

  • Verma, S. B., Ullman, F. G., Billesbach, D., Clement, R. J., and Kim, J., 1992, Eddy correlation measurements of methane flux in a northern peatland ecosystem,Boundary-Layer Meteorol. 58, 289–304.

    Google Scholar 

  • Webb, E. K., Pearman, G. I., and Leuning, R., 1980, Correction of flux measurements for density effects due to heat and water vapour transfer,Q. J. R. Meteorol. Soc. 106, 85–100.

    Google Scholar 

  • Webster, C. R., 1985, Brewster-plate spoiler: A novel method for reducing the amplitude of interference fringes that limit tunable laser absorption,J. Opt. Soc. Am. B 2, 1464–1470.

    Google Scholar 

  • Werle, P., Josek, K., and Slemr, F., 1991, Application of FM spectroscopy in trace gas monitoring: A study of some factors influencing the instrument design, in H. I. Schiff (ed.),Measurement of Atmospheric Gases, Proc. SPIE 1433, 128–135.

  • Zahniser, M. S., Kebabian, P. L., Anderson, S., Freedman, A., and Kolb, C. E., 1987, IR laser absorption eddy correlation measurement devices for trace atmospheric gases,AIP Conf. Proc. 160, 690–692.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hovde, D.C., Stanton, A.C., Meyers, T.P. et al. Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor. J Atmos Chem 20, 141–162 (1995). https://doi.org/10.1007/BF00696555

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696555

Key words

Navigation