Skip to main content
Log in

Genetic construction of PCB degraders

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Genetic construction of recombinant strains with expanded degradative abilities may be useful for bioremedation of recalcitrant compounds, such as polychlorinated biphenyls (PCBs). Some degradative genes have been found either on conjugative plasmids or on transposons, which would facilitate their genetic transfer. The catabolic pathway for the total degradation of PCBs is encoded by two different sets of genes that are not normally found in the same organism. ThebphABCD genes normally reside on the chromosome and encode for the four enzymes involved in the production of benzoate and chlorobenzoates from the respective catabolism of biphenyl and chlorobiphenyls. The genes encoding for chlorobenzoate catabolism have been found on both plasmids and the chromosome, often in association with transposable elements. Ring fission of chlorobiphenyls and chlorobenzoates involves themeta-fission pathway (3-phenylcatechol 2,3-dioxygenase) and theortho-fission pathway (chlorocatechol 1,2-dioxygenase), respectively. As the catecholic intermediates of both pathways are frequently inhibitory to each other, incompatibilities result. Presently, all hybrid strains constructed by in vivo matings metabolize simple chlorobiphenyls through complementary pathways by comprising thebph, benzoate, and chlorocatechol genes of parental strains. No strains have yet been verified which are able to utilize PCBs having at least one chlorine on each ring as growth substrates. The possible incompatibilities of hybrid pathways are evaluated with respect to product toxicity, and the efficiency of both in vivo and in vitro genetic methods for the construction of recombinant strains able to degrade PCBs is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowicz DA (1990) Aerobic and anaerobic degradation of PCBs: a review. CRC Crit. Rev. Biotechnol. 10: 241–251

    Google Scholar 

  • Adams RH, Huang CM, Higson FK, Brenner V & Focht DD (1992) Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. Appl. Environ. Microbiol. 58: 647–654

    Google Scholar 

  • Adriaens P, Kohler H-PE, Kohler-Staub D & Focht DD (1989) Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4′-dichlorobiphenyl. Appl. Environ. Microbiol. 55: 887–892

    Google Scholar 

  • Adriaens P & Focht DD (1991a) Cometabolism of 3,4-dichlorobenzoate byAcinetobacter sp. strain 4CB1. Appl. Environ. Microbiol. 57: 173–179

    Google Scholar 

  • Adriaens P & Focht DD (1991b) Evidence for inhibitory substrate interactions of 3,4-dichlorobenzoate byAcinetobacter sp. strain 4CB1. FEMS Microbiol. Ecol. 85: 293–300

    Google Scholar 

  • Ahmad D, Masse R & Sylvestre M (1990) Cloning and expression of genes involved in 4-chlorobiphenyl transformation byPseudomonas testosteroni: homology to polychlorobiphenyl-degrading genes in other bacteria. Gene 86: 53–61

    Google Scholar 

  • Ahmad D, Sylvestre M & Sondossi M (1991a) Subcloning ofbph genes fromPseudomonas testosteroni B-356 inPseudomonas putida andEscherichia coli: evidence for dehalogenation during initial attack on chlorobiphenyls. Appl. Environ. Microbiol. 57: 2880–2887

    Google Scholar 

  • Ahmad D, Sylvestre M, Sondossi M & Masse R (1991b) Bioconversion of 2-hydroxy-6-oxo-6-(4′-chlorophenyl)hexa-2,4-dienoic acid, themeta-cleavage product of 4-chlorobiphenyl. J. Gen. Microbiol. 137: 1375–1385

    Google Scholar 

  • Ahmed M & Focht DD (1973) Degradation of polychlorinated biphenyls by two species ofAchromobacter. Can. J. Microbiol. 19: 47–52

    Google Scholar 

  • Asturias JA & Timmis KN (1993) Three different 2,3-dihydroxybiphenyl-1,2-dioxygenase genes in the gram-positive polychlorinated biphenyl-degrading bacteriumRhodococcus globerulus P6. J. Bacteriol. 175: 4631–4640

    Google Scholar 

  • Bagdasarian M & Timmis KN (1982) Host vector systems for gene cloning inPseudomonas. Curr. Top. Microbiol. Immunol. 96: 47–67

    Google Scholar 

  • Barry GF (1988) A broad-host-range shuttle system for gene insertion into the chromosomes of Gram-negative bacteria. Gene 71: 75–84

    Google Scholar 

  • Bartels I, Knackmuss HJ & Reineke W (1984) Suicide inactivation of catechol 2,3-dioxygenase fromPseudomonas putida mt-2 by 3-halocatechols. Appl. Environ. Microbiol. 47: 500–505

    Google Scholar 

  • Barton MR & Crawford RL (1988) Novel biotransformations of 4-chlorobiphenyl by aPseudomonas sp. Appl. Environ. Microbiol. 54: 594–595

    Google Scholar 

  • Bedard DL, Unterman R, Bopp LH, Brennan MJ, Haberl ML & Johnson C (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51: 761–768

    Google Scholar 

  • Bedard DL, Wagner RE, Brennan MJ, Haberl ML & Brown Jr JF (1987) Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls byAlcaligenes eutrophus H850. Appl. Environ. Microbiol. 53: 1094–1102

    Google Scholar 

  • Bedard DL & Haberl ML (1990) Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains. Microb. Ecol. 20: 87–102

    Google Scholar 

  • Boronin AM, Filonov AE, Balkshina VV & Kulakova AN (1985) Stability of naphtalene biodegradation plasmids NPL-1 and NPL-41 in populations ofPseudomonas putida under conditions of continuous culture. Mikrobiologiya 54: 610–615

    Google Scholar 

  • Boyle AW, Silvin JC, Hassett JP, Nakas JP & Tannenbaum SW (1992) Bacterial PCB degradation. Biodegradation 3: 285–298

    Google Scholar 

  • Brenner V, Hernandez BS & Focht DD (1993) Variation in chlorobenzoate catabolism byPseudomonas putida P111 as a consequence of genetic alterations. Appl. Environ. Microbiol. 59: 2790–2794

    Google Scholar 

  • Brinkmann U & Reineke W (1992) Degradation of chlorotoluenes by in vivoconstructed hybrid strains: problems of enzyme specificity, induction and prevention ofmeta-pathway. FEMS Microbiol. Lett. 96: 81–88

    Google Scholar 

  • Brown JF, Bedard DL, Brennan MJ, Carnahan JC, Feng H & Wagner RE (1989) Polychlorinated biphenyl dechlorination in aquatic sediments. Science 236: 709–712

    Google Scholar 

  • Catelani D, Sorlini C & Treccani V (1971) The metabolism of biphenyl byPseudomonas putida. Experientia 27: 1173–1174

    Google Scholar 

  • Chamier B, Lorenz MG & Wackernagel W (1993) Natural transformation ofAcinetobacter calcoaceticus by plasmid DNA adsorbed on sand and groundwater aquifer material. Appl. Environ. Microbiol. 59: 1662–1667

    Google Scholar 

  • Chang H, Lee J, Roh S, Kim SR, Min KR, Kim CK, Kim EG & Kim Y (1992) Molecular cloning and characterization of catechol 2,3-dioxygenases from biphenyl/polychlorinated biphenyls-degrading bacteria. Biochem. Biophys. Res. Comm. 187: 609–614

    Google Scholar 

  • Chatterjee DK & Chakrabarty AM (1982) Genetic rearrangements in plasmids specifying total degradation of chlorinated benzoic acids. Mol. Gen. Genet. 188: 279–285

    Google Scholar 

  • Chatterjee DK & Chakrabarty AM (1983) Genetic homology between independently isolated chlorobenzoate-degradative plasmids. J. Bacteriol. 153: 532–534

    Google Scholar 

  • Chatterjee DK & Chakrabarty AM (1984) Restriction mapping of a chlorobenzoate degradative plasmid and molecular cloning of the degradative genes. Gene 27: 173–181

    Google Scholar 

  • Chatterjee DK, Kellogg ST, Hanada S & Chakrabarty AM (1981a) Plasmid specifying total degradation of 3-chlorobenzoate by a modifiedortho pathway. J.Bacteriol. 146: 639–646

    Google Scholar 

  • Chatterjee DK, Kellogg ST, Watkins DR & Chakrabarty AM (1981b) Plasmids in the biodegradation of chlorinated aromatic compounds. In: Levy S, Clowes RC, Koenig E (Eds.). Molecular biology, pathogenicity and ecology of bacterial plasmids, p.519–528, Plenum Press, New York

    Google Scholar 

  • Dagley S, Chapman PJ, Gibson DT & Wood JM (1964) Degradation of the benzene nucleus by bacteria. Nature (London) 202: 775–778

    Google Scholar 

  • de Bont JAM, Vorage MJAW, Hartmans S & van den Tweel WJJ (1986) Microbial degradation of 1,3-dichlorobenzene. Appl. Environ. Microbiol. 52: 677–680

    Google Scholar 

  • de Lorenzo V, Eltis L, Kessler B & Timmis KN (1993) Analysis ofPseudomonas gene products usinglacI q/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123: 17–24

    Google Scholar 

  • Don RH, Weightman AJ, Knackmuss HJ & Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate inAlcaligenes eutrophus JMP134 (pJP4). J. Bacteriol. 161: 85–90

    Google Scholar 

  • Dunaway-Mariano D & Babbitt PC (1994) On the origins and functions of the enzymes of the 4-chlorobenzoate to 4-hydroxybenzoate converting pathway. Biodegradation 5: 259–276 (this issue)

    Google Scholar 

  • Dwyer DF, Rojo F & Timmis KN (1988) Fate and behaviour in an activated sludge microcosm of a genetically-engineered micro-organism designed to degrade substituted aromatic compounds, p. 77–88. In: Sussmann M, Collins CH, Skinner FA & Stewart-Tull (Eds) The release of genetically-engineered micro-organisms, Academic Press, Ltd., London

    Google Scholar 

  • Dykhuizen DE & Hartl DL (1983) Selection in chemostats. Microbiol. Rev. 47: 150–168

    Google Scholar 

  • Ensley BD (1985) Stability of recombinant plasmids in industrial microorganisms. CRC Crit. Rev. Biotechnol. 4: 263–283

    Google Scholar 

  • Eltis LD, Hofmann B, Hecht HJ, Lunsdorf H & Timmis KN (1993) Purification and crystallization of 2,3-dihydroxybiphenyl 1,2-dioxygenase. J. Biol. Chem. 268: 2727–2732

    Google Scholar 

  • Fetzner S, Müller R & Lingens F (1989) Degradation of 2-chlorobenzoate byPseudomonas cepacia 2CBS. Biol. Chem. Hoppe-Seyler 370: 1173–1182

    Google Scholar 

  • Fetzner S, Müller R & Lingens F (1992) Purification and some properties of 2-halobenzoate 1,2-dioxygenase, a two component enzyme system fromPseudomonas cepacia 2CBS. J. Bacteriol. 174: 279–290

    Google Scholar 

  • Focht D.D. (1987) Ecological and evolutionary considerations on the metabolism of xenobiotic chemicals in soil. p. 157–167. In: L. Boersma (ed.), Future Developments in Soil Science Research. American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Focht DD (1988) Performance of biodegradative microrganisms in soil: xenobiotic chemicals as unexploited metabolic niches, p.15–29. In: Omen GS (Ed), Environmental biotechnology, Plenum Publishing, New York

    Google Scholar 

  • Focht DD (1993) Microbial degradation of chlorinated biphenyls, p.341–407. In: Bollag JM & Stotzky G (Ed) Soil Biochemistry, volume 8, Marcel Dekker Inc., New York

    Google Scholar 

  • Frantz B. & Chakrabarty AM (1987) Organization and nucleotide sequence determination of a gene cluster in 3-chlorocatechol degradation. Proc. Natl. Acad. Sci. USA 84: 4460–4464

    Google Scholar 

  • Friedmann AM, Long SR, Brown SE, Buikema WJ & Ausubel FM (1982) Construction of a broad host range cosmid cloning vector and its use in genetic analysis ofRhizobium mutants. Gene 18: 289–296

    Google Scholar 

  • Fulthorpe RR & Wyndham RC (1992) Involvement of a chlorobenzoate-catabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline, and 2,4-dichlorophenoxyacetic acid in a freshwater ecosystem. Appl. Environ. Microbiol. 58: 314–325

    Google Scholar 

  • Furukawa K, Tonomura K & Kamibayashi A (1978) Effect of chlorine substitution on the biodegradability of polychlorinated biphenyls. Appl. Environ. Microbiol. 35: 223–227

    Google Scholar 

  • Furukawa K (1994) Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Biodegradation 5: 289–300 (this issue)

    Google Scholar 

  • Furukawa, K, Tonomura, K & Kamibayashi A (1979) Effect of chlorine substitution of the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol. 38: 301–310

    Google Scholar 

  • Furukawa K & Chakrabarty AM (1982) Involvement of plasmids in total degradation of chlorinated biphenyls. Appl. Environ. Microbiol. 44: 619–626

    Google Scholar 

  • Furukawa K & Miyazaki T (1986) Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation inPseudomonas pseudoalcaligenes. J. Bacteriol. 166: 392–398

    Google Scholar 

  • Furukawa K & Arimura N (1987) Purification and properties of 2,3-dihydroxybiphenyl dioxygenase from polychlorinated biphenyldegradingPseudomonas pseudoalcaligenes andPseudomonas aeruginosa carrying the clonedbphC gene. J. Bacteriol. 169: 924–927

    Google Scholar 

  • Furukawa K, Hayashida S & Taira K (1991) Gene-specific transposon mutagenesis of the biphenyl/polychlorinated biphenyldegradation-controllingbph operon in soil bacteria. Gene 98: 21–28

    Google Scholar 

  • Furukawa K, Hirose J, Suyama A, Zaiki T & Hayashida S (1993) Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon). J. Bacteriol. 175: 5224–5232.

    Google Scholar 

  • Gerritse J, van der Woude BJ & Gottschal JC (1992) Specific removal of chlorine from theortho-position of halogenated benzoic acids by reductive dechlorination in anaerobic enrichment cultures. FEMS Microbiol. Lett. 100: 273–280

    Google Scholar 

  • Ghosal D & You IS (1988) Nucleotide homology and organization of chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Mol. Gen. Genet. 211: 113–120

    Google Scholar 

  • Ghosal D & You IS (1989) Operon structure and nucleotide homology of the chlorocatechol genes of plasmids pJP4 and pAC27. Gene 83: 225–232

    Google Scholar 

  • Ghosal D, You IS, Chatterjee DK & Chakrabarty AM (1985) Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and pJP4. Proc. Natl. Acad. Sci. USA 82: 1638–1642

    Google Scholar 

  • Hartmann J, Engelberts K, Nordhaus K, Schmidt E & Reineke W (1989) Degradation of 2-chlorobenzoate by in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett. 61: 17–22

    Google Scholar 

  • Hartmann J, Reineke W & Knackmuss HJ (1979) Metabolism of 3-chloro, 4-chloro-, and 3,5-dichlorobenzoate by apseudomonad. Appl. Environ. Microbiol. 37: 421–428

    Google Scholar 

  • Havel J. & Reineke W (1991) Total degradation of various chlorobiphenyls by cocultures and in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett. 78: 163–170

    Google Scholar 

  • Hayase N, Taira K & Furukawa K (1990)Pseudomonas putida KF715bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis, and expression in soil bacteria. J. Bacteriol. 172: 1160–1164

    Google Scholar 

  • Hickey WJ, Brenner V. & Focht DD (1992) Mineralization of 2-chloro- and 2,5-dichlorobiphenyl byPseudomonas sp. strain UCR2. FEMS Microbiol. Lett. 98: 175–180

    Google Scholar 

  • Hickey WJ, Searles DB & Focht DD (1993) Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria. Appl. Environ. Microbiol. 59: 1194–1200

    Google Scholar 

  • Hilton MD & Cain WJ (1990) Bioconversion of cinnamic acid to acetophenone by a pseudomonad: microbial production of a natural flavor compound. Appl. Environ. Microbiol. 56: 623–627

    Google Scholar 

  • Higson, FK & Focht, DD (1992) Utilization of 3-chloro 2-methylbenzoic acid byPseudomonas cepacia MB2 through themeta fission pathway. Appl. Environ. Microbiol. 58: 2501–2504

    Google Scholar 

  • Huang C-M (1988) Strain construction strategies for chlorinated aromatic hydrocarbon-utilizers by multiple chemostat. PhD Thesis, University of California, Riverside.

    Google Scholar 

  • Itoh Y & Haas D (1985) Cloning vectors derived from thePseudomonas plasmid pVS1. Gene 36: 27–36

    Google Scholar 

  • Jacoby GA (1986) Resistence plasmids ofPseudomonas. In: Sokatch JR (ed) The bacteria, Vol. X, p.265–293, Academic Press, Orlando, FL

    Google Scholar 

  • Jeenes DJ, Reineke W, Knackmuss HJ & Williams PA (1982) TOL plasmid pWWO in constructed halobenzoate-degradingPseudomonas strains: enzyme regulation and DNA structure. J. Bacteriol. 150: 180–187

    Google Scholar 

  • Kamp PF & Chakrabarty AM (1979) Plasmids specifyingp-chlorobiphenyl degradation in enteric bacteria. In: Timmis KN & Pühler A (eds) Plasmids of medical, environmental, and commercial importance, p.275–285, Elsevier, North Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Keshavarz T, Lilly MD & Clarke PH (1985) Stability of a catabolic plasmid in continuous culture. J. Gen. Microbiol. 131: 1193–1203

    Google Scholar 

  • Khan A & Walia S (1989) Cloning of bacterial genes specifying degradation of 4-chlorobiphenyl fromPseudomonas putida OU83. Appl. Environ. Microbiol. 55: 798–805

    Google Scholar 

  • Khanna M & Stotzky G (1992) Transformation ofBacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl. Environ. Microbiol. 58: 1930–1939

    Google Scholar 

  • Kimbara K, Hashimoto T, Fukuda M, Koana T, Takagi M, Oishi M & Yano K (1989) Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacteriumPseudomonas sp. strain KKS102. J. Bacteriol. 171: 2740–2747

    Google Scholar 

  • Kochetkov VV, Stasovoitov II, Boronin AM & Skryabin GK (1982)Pseudomonas putida pBS241: Plasmid mediated biphenyl degradation. Dokl. Akad. Nauk SSSR 226: 241–243

    Google Scholar 

  • Kohler-Staub D & Kohler H-PE (1989) Microbial degradation of β-chlorinated four-carbon aliphatic acids. J. Bacteriol. 171: 1428–1434.

    Google Scholar 

  • Kröckel L & Focht DD (1987) Construction of chlorobenzeneutilizing recombinants by progenitive manifestation of a rare event. Appl. Environ. Microbiol. 53: 2470–2475

    Google Scholar 

  • Lajoie CA, Zylstra GJ, DeFlaun MF & Strom PF (1993) Development of field application vectors for bioremedation of soils contaminated with polychlorinated biphenyls. Appl. Environ. Microbiol. 59: 1735–1741

    Google Scholar 

  • Latorre J, Reineke W. & Knackmuss HJ (1984) Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Arch. Microbiol. 140: 159–165

    Google Scholar 

  • Layton AC, Sanseverino J, Wallace W, Corcoran C & Sayler GS (1992) Evidence for 4-chlorobenzoic acid dehalogenation mediated by plasmids related to pSS50. Appl. Environ. Microbiol. 58: 399–402

    Google Scholar 

  • Lehrbach PR, Zeyer J, Reineke W, Knackmuss HJ & Timmis KN (1984) Enzyme recruitment in vitro: Use of cloned genes to extend the range of haloaromatics degraded byPseudomonas sp. strain B13. J. Bacteriol. 158: 1025–1032

    Google Scholar 

  • Levin BR, Stewart FM & Rice VA (1979) The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid 2: 247–260

    Google Scholar 

  • Lorenz MG & Wackernagel W (1992) DNA binding to various clay minerals and retarded enzymatic degradation of DNA in a sand/clay microcosm, p. 103–113. In: Gauthier MJ (Ed.), Gene transfers and environment. Springer-Verlag KG, Berlin

    Google Scholar 

  • Meacock PA & Cohen SN (1980) Partitioning of bacterial plasmids during cell division: acis — acting locus that accomplishes stable plasmid inheritance. Cell 20: 529–542

    Google Scholar 

  • Mermod N, Ramos JL, Lehrbach PR & Timmis KN (1986) Vector for regulated expression of cloned genes in a wide range of Gramnegative bacteria. J. Bacteriol. 167: 447–454

    Google Scholar 

  • Mokross H, Schmidt E & Reineke W (1990) Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett. 71: 179–185

    Google Scholar 

  • Mondello FJ (1989) Cloning and expression inEscherichia coli ofPseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation. J. Bacteriol. 171: 1725–1732

    Google Scholar 

  • Morris PJ, Mohn WW, Quensen JF III, Tiedje JM & Boyd SA (1992) Establishment of polychlorinated biphenyl-degrading enrichment culture predominantly meta dechlorination. Appl. Environ. Microbiol. 58: 3088–3094

    Google Scholar 

  • Nakatsu C, Ng J, Singh R, Straus N & Wyndham C (1991) Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. Proc. Natl. Acad. Sci. USA 88: 8312–8316

    Google Scholar 

  • Ngai K & Ornston LN (1988) Abundant expression ofPseudomonas genes for chlorocatechol metabolism. J. Bacteriol. 170: 2412–2413

    Google Scholar 

  • Nies L & Vogel TM (1990) Effects of organic substrates on dechlorination of Aroclor 1242 in anaerobic sediment. Appl. Environ. Microbiol. 56: 2612–2617

    Google Scholar 

  • Nordström, K (1983) Control of plasmid replication. Plasmid 9: 1–7

    Google Scholar 

  • Oltmanns RH, Rast HG & Reineke W (1988) Degradation of 1,4-dichlorobenzene by enriched and constructed bacteria. Appl. Microbiol. Biotechnol. 28: 609–616

    Google Scholar 

  • Omori T, Sugimura K, Ishigooka H & Minoda Y (1986) Purification and some properties of a 2-hydroxy-6-oxo-6-phenyl-2,4-dienoic acid hydrolyzing enzyme fromPseudomonas cruciviae S93B1 involved in the degradation of biphenyl. Agric. Biol. Chem. 50: 1513–1518.

    Google Scholar 

  • Parsons JR, Sijm DTHM, van Laar A & Hutzinger O (1988) Biodegradation of chlorinated biphenyls and benzoic acids by aPseudomonas species. Appl. Microbiol. Biotechnol. 29: 82–84

    Google Scholar 

  • Perkins EJ, Gordon MP, Caceres O. & Lurquin PF (1990) Organization and sequence analysis of the 2,4-dichlorophenol oxidative operons of plasmid pJP4. J. Bacteriol. 172: 2351–2359

    Google Scholar 

  • Pipke R, Wagner-Dbler I, Timmis KN & Dwyer DF (1992) Survival and function of a genetically engineered pseudomonad in aquatic sediment microcosms. Appl. Environ. Microbiol. 58: 1259–1265

    Google Scholar 

  • Quensen JF III, Boyd SA & Tiedje JM (1990) Dechlorination of 4 commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl. Environ. Microbiol. 56: 2360–2369

    Google Scholar 

  • Quensen JF III, Tiedje JM & Boyd SA (1988) Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science 242: 752–754

    Google Scholar 

  • Ramos JL, Stolz A, Reineke W & Timmis KN (1986) Altered effector specificities in regulators of gene expression: TOL plasmidxylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proc. Natl. Acad. Sci. USA 83: 8467–8471

    Google Scholar 

  • Ramos JL, Wasserfallen A, Rose K & Timmis KN (1987) Redesigning metabolic routes: Manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 235: 593–596

    Google Scholar 

  • Reineke W (1984) Microbial degradation of halogenated aromatic compounds p. 319–360. In: D.T. Gibson (ed), Microbial degradation of organic compounds. Marcel Dekker Inc. New York

    Google Scholar 

  • Reineke W & Knackmuss HJ (1979) Construction of haloaromatics utilising bacteria. Nature 277: 385–386

    Google Scholar 

  • Reineke W & Knackmuss HJ (1980) Hybrid pathway for chlorobenzoate metabolism inPseudomonas sp. B13 derivatives. J. Bacteriol. 142: 467–473

    Google Scholar 

  • Reineke W & Knackmuss HJ (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzenedegrading bacterium. Appl. Environ. Microbiol. 47: 395–402

    Google Scholar 

  • Reineke W & Knackmuss HJ (1988) Microbial degradation of haloaromatics. Annu. Rev. Microbiol. 42: 263–287

    Google Scholar 

  • Reineke W, Jeenes DJ, Williams PA & Knackmuss HJ (1982) TOL plasmid pWWO in constructed halobenzoate degradingPseudomonas strains: prevention ofmeta pathway. J. Bacteriol. 150: 195–201

    Google Scholar 

  • Romanowski G, Lorenz MG & Wackernagel W (1991) Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Appl. Environ. Microbiol. 57: 1057–1061

    Google Scholar 

  • Rothmel R.K., Chakrabarty A.M., Berry A & Darzins A (1991) Genetic systems inPseudomonas. Methods Enzymol. 204: 485–514

    Google Scholar 

  • Sangodkar UMX, Aldrich TL, Haugland RA, Johnson J, Rothmel RK, Chapman PJ, Chakrabarty AM (1989) Molecular basis of biodegradation of chloroaromatic compounds. Acta Biotechnol. 9: 301–316

    Google Scholar 

  • Saye DJ, Ogunseitan OA, Sayler GS & Miller RV (1990) Transduction of linked chromosomal genes betweenPseudomonas aeruginosa strains during incubation in situ in a freshwater habitat. Appl. Environ. Microbiol. 56: 140–145

    Google Scholar 

  • Sayler GS, Hooper SW, Layton AC & King JMH (1990) Catabolic plasmids of environmental significance. Microb. Ecol. 19: 1–20

    Google Scholar 

  • Schwien U & Schmidt E (1982) Improved degradation of monochlorophenols by a constructed strain. Appl. Environ. Microbiol. 44: 33–39

    Google Scholar 

  • Searles D, Brenner V & Focht DD (1993) Genetic exchange in soil among indigenous biphenyl-utilizers and a dichlorobenzoate-utilizing inoculant. Microbiol. Proc. Abstract Q301, ASM Meeting, Atlanta

  • Selifonov SA & Starozoitov II (1990) Comparative study of aromatic ringmeta-cleavage enzymes inPseudomonas strains with plasmid and chromosomal genetic control of the catabolism of biphenyl andm-toluate. Biokhimiya 55: 2171–81

    Google Scholar 

  • Senior ET, Bull AT, & Slater JH (1976) Enzyme evolution in a microbial community growing on the herbicide Dalapon. Nature (London) 263: 476–479

    Google Scholar 

  • Shields MS, Hooper SW & Sayler GS (1985) Plasmid-mediated mineralization of 4-chlorobiphenyl. J. Bacteriol. 163: 882–889

    Google Scholar 

  • Slater, JH (1985) Gene transfer in microbial communities. In: HO Halvorson, D Pramer, M Rogul (Eds) pp 89–98. Engineered Organisms in the Environment: Scientific Issues, American Society for Microbiology, Washington

    Google Scholar 

  • Sondossi M, Sylvestre M & Ahmad D (1992) Effects of chlorobenzoate transformation on thePseudomonas testosteroni biphenyl and chlorobiphenyl degradation pathway. Appl. Environ. Microbiol. 58: 485–495

    Google Scholar 

  • Springael D, Diels L, Hooyberghs L, Kreps S & Mergeay M (1993) Construction and characterization of heavy metal-resistant haloaromatic-degradingAlcaligenes eutrophus strains. Appl. Environ. Microbiol. 59: 334–339

    Google Scholar 

  • Springael D, Kreps S & Mergeay M (1993) Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes inAlcaligenes eutrophus A5. J. Bacteriol. 175: 1674–1681

    Google Scholar 

  • Springael D, Diels L & Mergeay M (1994) Transfer and expression of PCB-degradative genes into heavy metal resistantAlcaligenes eutrophus strains. Biodegradation 5: 343–357 (this issue)

    Google Scholar 

  • Stewart GJ, Sinigalliano CD & Garko KA (1991) Binding of exogenous DNA to marine sediments and the effect of DNA/sediment binding on natural transformation ofPseudomonas stutzeri strain ZoBell in sediment columns. FEMS Microbiol. Ecol. 85: 1–8

    Google Scholar 

  • Sylvestre M, Masse R, Ayotte C, Messier F & Fauteux J (1985) Total biodegradation of 4-chlorobiphenyl (4CBP) by a two-membered bacterial culture. Appl. Microbiol. Biotechnol. 21: 191–195

    Google Scholar 

  • Sylvestre M, Mailhiot K & Ahmad D (1989) Isolation and preliminary characterization of a 2-chlorobenzoate degradingPseudomonas. Can. J. Microbiol. 35: 439–443

    Google Scholar 

  • Thomas CM & Smith CA (1987) Incompatibility group P plasmids: Genetics, evolution, and use in genetic manipulation. Ann. Rev. Microbiol. 41: 77–101

    Google Scholar 

  • Timmis KN, Lehrbach PR, Harayama S, Don RH, Mermod N, Bas S, Leppik R, Weightman AJ, Reineke W, Knackmuss HJ (1985) Analysis and manipulation of plasmid encoded pathways for the catabolism of aromatic compounds by soil bacteria, p. 719–739. In: Helinski DR, Cohen SN, Clewell DB, Jackson DA & Hollaender A (Eds), Plasmids in Bacteria. Plenum Publishing Corporation, New York

    Google Scholar 

  • Timmis KN, Rojo F & Ramos JL (1988) Prospects for laboratory engineering of bacteria to degrade pollutants. In: Omenn GS (Ed), Environmental Biotechnology: Reducing Risks from Environmental Chemicals through Biotechnology (pp 61–79) Plenum Publishing, New York

    Google Scholar 

  • van der Meer JR, de Vos WM, Harayama S & Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56: 677–694

    Google Scholar 

  • van der Meer JR, Eggen RIL, Zehnder AJB & de Vos (1991a) Sequence analysis of thePseudomonas sp. strain P51tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J. Bacteriol. 173: 2425–2434

    Google Scholar 

  • van der Meer JR, Frijters ACJ, Leveau JHJ, Eggen RIL, Zehnder AJB & de Vos WM (1991b) Characterization of thePseudomonas sp. strain P51 genetcbR, a LysR-type transcriptional activator of thetcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. J. Bacteriol. 173: 3700–3708

    Google Scholar 

  • van der Meer JR, van Neerven ARW, de Vries EJ, de Vos WM & Zehnder AJB (1991c) Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzoate ofPseudomonas sp. strain P51. J. Bacteriol. 173: 6–15

    Google Scholar 

  • van der Meer JR, de Vos WM, Harayama S. & Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56: 677–694

    Google Scholar 

  • van Dort HM & Bedard DL (1991) Reductiveortho dechlorination of a polychlorinated biphenyl congener by anaerobic mieroorganisms. Appl. Environ. Microbiol. 57: 1576–1578

    Google Scholar 

  • Wagner-Döbler I, Pipke R, Timmis KN & Dwyer WF (1992) Evaluation of aquatic sediment microcosms and their use in assessing of introduced microorganisms on ecosystem parameters. Appl. Environ. Microbiol. 58: 1249–1258

    Google Scholar 

  • Walia S, Khan A & Rosenthal N (1990) Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments. Appl. Environ. Microbiol. 56:254–259

    Google Scholar 

  • Weightman AJ, Don RH, Lehrbach PR & Timmis KN (1984) The identification and cloning of genes coding haloaromatic catabolic enzymes and the construction of hybrid pathways for substrate mineralization (pp 47–80). In: Omenn GS & Hollaender A (Eds), Genetic Control of Environmental Pollutants. Plenum Publishing, New York

    Google Scholar 

  • Weisshaar MP, Franklin FCH & Reineke W (1987) Molecular cloning and expression of the 3-chlorobenzoate-degrading genes fromPseudomonas sp. strain B13. J. Bacteriol. 169: 394–402

    Google Scholar 

  • Wyndham RC, Singh RK & Straus NA (1988) Catabolic instability, plasmid gene deletion and recombination inAlcaligenes sp. BR 60. Arch. Microbiol. 50: 237–243

    Google Scholar 

  • Yates JR & Mondello FM (1989) Sequence Similarities in the Genes Encoding Polychlorinated Biphenyl degradation byPseudomonas strain LB400 andAlcaligenes eutrophus H950. J. Bacteriol. 171: 1733–1735

    Google Scholar 

  • Zaitsev GM & Karasevich YN (1984) Utilization of 2-chlorobenzoic acid byPseudomonas cepacia. Mikrobiologiya 54: 356–359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, V., Arensdorf, J.J. & Focht, D.D. Genetic construction of PCB degraders. Biodegradation 5, 359–377 (1994). https://doi.org/10.1007/BF00696470

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696470

Key words

Navigation