Skip to main content
Log in

Molecular analysis of pentachlorophenol degradation

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A limited number of microorganisms have been described for their ability to partially degrade pentachlorophenol (PCP), or to completely mineralize it. Several years ago we chose one of these microorganisms,Flavobacterium sp. strain ATCC 39723, for use in a detailed molecular analysis of the catabolism of PCP. This strain was chosen because it had previously been studied in great detail for its growth characteristics in relation to degradation of PCP. In this paper we provide an overview of the degradation pathway of PCP to 2,6-dichloro-p-hydroquinone byFlavobacterium. The specific biochemical reactions and the genes encoding the enzymes are reviewed. The successful transformation and site specific mutagenesis ofFlavobacterium, as well as the discovery of two newpcp alleles is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211: 132–138

    Google Scholar 

  • Arca P, Hardisson C & Suarez JE (1990) Purification of a glutathione S-transferase that mediates fosfomycin resistance in bacteria. Antimicrob. Agents Chemother. 34: 844–848

    Google Scholar 

  • Barnett MJ & Long SR (1990) DNA sequence and translational product of a new nodulation-regulatory locus: SyrM has sequence similarity to NodD proteins. J. Bacteriol. 172: 3695–3700

    Google Scholar 

  • Batie CJ, LaHaie E & Ballou DP (1987) Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase fromPseudomonas cepacia. J. Biol. Chem. 262: 1510–1518

    Google Scholar 

  • Bennett CD (1974) Similarity in the sequence ofEscherichia coli dihydrofolate reductase with other pyridine nucleotide-requiring enzymes. Nature 248: 67–68

    Google Scholar 

  • Brunel F & Davison J (1988) Cloning and sequencing ofPseudomonas genes encoding vanillate demethylase. J. Bacteriol. 170: 4924–4930

    Google Scholar 

  • Chasseaud LF (1979) The role of glutathione and glutathioneS-transferases in the metabolism of chemical carcinogens and other electrophilic agents. Adv. Cancer Res. 29: 175–274

    Google Scholar 

  • Chu JP & Kirsch EJ (1972) Metabolism of pentachlorophenol by an axenic bacterial culture. Appl. Microbiol. 23: 1033–1035

    Google Scholar 

  • Coco WM, Rothmel RK, Henikoff S & Chakrabarty AM (1993) Nucleotide sequence and initial functional characterization of theclcR gene encoding a LysR family activator of theclcABD chlorocatechol operon inPseudomonas putida. J. Bacteriol. 175: 417–427

    Google Scholar 

  • Correll CC, Batie CJ, Ballou DP & Ludwig ML (1992) Phthalate dioxygenase reductase: A modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Science 258: 1604–1610

    Google Scholar 

  • Crosby DG (1981) Environmental chemistry of pentachlorophenol. Pure Appl. Chem. 53: 1052–1080

    Google Scholar 

  • Deveraux J, Haeverli P & Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12: 387–395

    Google Scholar 

  • Di Ilio C, Aceto A, Piccolomini R, Allocati N, Faraone A, Cellini L, Ravagnan G & Federici G (1988) Purification and characterization of three forms of glutathione transferase fromProteus mirabilis. Biochem. J. 255: 971–975

    Google Scholar 

  • Douglas KT (1988) Reactivity of glutathione in model systems for glutathioneS-transferases and related enzymes In: Sies H (Ed) Glutathione Conjugation (pp 2–43). Academic Press, San Diego

    Google Scholar 

  • Eggink G, Engel H, Vriend G, Terpstra P & Witholt B (1990) Rubredoxin reductase ofPseudomonas oleovorans: structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J. Mol. Biol. 212: 135–142

    Google Scholar 

  • Entsch B, Palfey B, Ballou DP & Massey V (1991) Catalytic function of tyrosine residues inpara-hydroxybenzoate hydroxylase as determined by the study of site directed mutagenesis. J. Biol. Chem. 266: 17341–17349

    Google Scholar 

  • Flashner MS & Massey V (1974) Flavoprotein oxygenases. In: Hayaishi O (Ed) Molecular mechanisms of oxygen activation (pp 245–283). Academic Press, Inc., New York

    Google Scholar 

  • Gonzalez JF & Hu W (1991) Effect of glutatmate on the degradation of pentachlorophenol byFlavobacterium sp. Appl. Microbiol. Biotechnol. 35: 100–104

    Google Scholar 

  • Goswami A & Rosenberg IN (1979) Characterization of a flavoprotein iodotyrosine deiodinase from bovine thyroid. J. Biol. Chem. 254: 12326–12330

    Google Scholar 

  • Grove GR, Zarlengo P, Timmerman KP, Li NQ, Tam MF & Tu CPD (1988) Characterization and heterospecific expression of cDNA clones of genes in the maize GSH-S-transferase multigene family. Nucl. Acids Res. 16: 425–438

    Google Scholar 

  • Häggblom MM, Apajalahti JHA & Salkinoja-Salonen MS (1988a) O-methylation of chlorinated para-hydroquinones byRhodococcus chlorophenolicus. Appl. Environ. Microbiol. 54: 1818–1824

    Google Scholar 

  • Häggblom MM, Nohynek LJ & Salkinoja-Salonen MS (1988b) Degradation and O-methylation of chlorinated phenolic compounds byRhodococcus andMycobacterium strains. Appl. Environ. Microbiol. 54: 3043–3052

    Google Scholar 

  • Häggblom MM, Janke D & Salkinoja-Salonen MS (1989) Hydroxylation and dechlorination of tetrachlorohydorquinone byRhodococcus sp. strain CP-2 cell extracts. Appl. Environ. Microbiol. 55: 516–519

    Google Scholar 

  • Jakoby WB (1980) Detoxication enzymes. In: Jakoby WB (Ed) Enzymatic Basis of Detoxication, Vol 1 (pp 1–6). Academic Press, New York

    Google Scholar 

  • Jakoby WB & Habig WH (1980) Glutathione transferases. In: Jakoby WB (Ed) Enzymatic Basis of Detoxication, Vol 2 (pp 63–94). Academic Press, New York

    Google Scholar 

  • Juha HAP, Karpanoja P & Salkinoja-Salonen MS (1986)Rhodococcus chlorophenolicus sp. nov., a chlorophenol-mineralizing actinomycete. Int. J. Syst. Bacteriol. 36: 246–251

    Google Scholar 

  • Juha HAP & Salkinoja-Salonen MS (1987a) Dechlorination andpara-hydroxylation of polychlorinated phenols byRhodococcus chlorophenolicus. J. Bacteriol. 169: 675–681

    Google Scholar 

  • Juha HAP & Salinoja-Salonen MS (1987b) Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-inducedRhodococcus chlorophenolicus. J. Bacteriol. 169: 5125–5130

    Google Scholar 

  • Kamei K, Oshino R & Hara S (1990) Catalytic activity: nucleophilic addition of glutathione to various compounds. J. Biochem. 107: 111–117

    Google Scholar 

  • Kaphammer B & Olsen RH (1990) Cloning and characterization oftfdS, the repressor-activator gene oftfdB, from the 2,4-dichlorophenoxyacetic acid catabolic plasmid pJP4. J. Bacteriol. 172: 5856–5862

    Google Scholar 

  • Karplus PA, Daniels MJ & Herriott JR (1991) Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251: 60–66

    Google Scholar 

  • Kikuchi Y, Kikuchi A & Ui M (1989) A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells. EMBO J. 8: 3807–3814

    Google Scholar 

  • Lange CC, Schneider BJ & Orser CS (1994) Verification of the role of PCP 4-monooxygenase in chlorine elimination from pentachlorophenol byFlavobacterium sp. Biodegrad. (submitted)

  • La Roche SD & Leisinger T (1990) Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathioneS-transferase supergene family. J. Bacteriol. 172: 164–171

    Google Scholar 

  • Leisinger T & Kohler-Staub D (1990) Dichloromethane dehalogenase fromHyphomicrobium DM2. Methods in Enzymol. 188: 355–361

    Google Scholar 

  • Masai E, Katayama Y, Kubota S, Kawai S, Yamasaki M & Morohoshi N (1993) A bacterial enzyme degrading the model lignin compound beta-etherase is a member of the glutathione-S-transferase superfamily. FEBS Lett. 323: 135–140

    Google Scholar 

  • Meletzus D & Eichenlaub R (1991) Transformation of the grampositive bacteriumClavibacter michiganense subsp.michiganense by electroporation with development of a cloning vector. J. Bacteriol. 173: 184–190

    Google Scholar 

  • Meyer Jr RC, Goldsborough PB & Woodson WR (1991) An ethylene-responsive flower senescence-related gene from carnation encodes a protein homologous to glutathioneS-transferases. Plant Mol. Biol. 17: 277–281

    Google Scholar 

  • Mignogna G, Allocati N, Aceto A, Piccolomini R, Di Ilio C, Barra D & Martini F (1993) The amino acid sequence of glutathione transferase fromProteus mirabilis, a prototype of a new class of enzymes. Eur. J. Biochem. 211: 421–425

    Google Scholar 

  • Mikesell MD & Boyd SA (1986) Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl. Environ. Microbiol. 52: 861–865

    Google Scholar 

  • Müller R, Oltmanns RH & Lingens F (1988) Enzymatic dehalogention of 4-chlorobenzoate by extracts fromArthrobacter sp. SU DSM 20407. Biol. Chem. Hoppe-Seyler 369: 567–571

    Google Scholar 

  • Ornston LN & Neidle El (1991) Evolution of genes for the β-ketoadipate pathway inAcinetobacter calcoaceticus. In: Towner KJ (ed) The Biology of Acinetobacter (pp. 201–237). Plenum Press, New York

    Google Scholar 

  • Orser CS, Lange CC, Xun L, Zahrt TC & Schneider BJ (1993a) Cloning, sequence analysis, and expression ofFlavobacterium pentachlorophenol 4-monooxygenase gene inEscherichia coli. J. Bacteriol. 174: 411–416

    Google Scholar 

  • Orser CS, Dutton J, Lange C, Jablonski P, Xun L & Hargis M (1993b) Characterization of aFlavobacterium glutathione S-transferase gene involved in reductive dechlorination. J. Bacteriol. 175: 2640–2644

    Google Scholar 

  • Peterson LA & Guengerich FP (1988) Comparison of and relationships between glutathionS-transferase and cytochrome P-450 systems. In: Sies H (Ed) Glutathione Conjugation (pp 193–233). Academic Press, San Diego

    Google Scholar 

  • Radehaus PM & Schmidt SK (1992) Characterization of a novelPseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Appl. Environ. Microbiol. 58: 2879–2885

    Google Scholar 

  • Reineke W & Knackmuss J-J (1988) Microbial degradation of haloaromatics. Annu. Rev. Microbiol. 42: 263–287

    Google Scholar 

  • Rossmann MG, Moras D & Olsen KW (1974) Chemical and biological evolution of a nucleotide-binding protein. Nature 250: 194–199

    Google Scholar 

  • Rothmel RK, Aldrich TL, Houghton JE, Coco WM, Ornston LN & Chakrabarty AM (1990) Nucleotide sequencing and characterization ofPseudomonas putida catR: a positive regulator of thecatBC operon is a member of the LysR family. J. Bacteriol. 172: 922–931

    Google Scholar 

  • Saber DL & Crawford RL (1985) Isolation and characterization ofFlavobacterium strains that degrade pentachlorophenol. Appl. Environ. Microbiol. 50: 1512–1518

    Google Scholar 

  • Saber DL (1987) Isolation, characterization, and genetics of pentachlorophenol-degradingFlavobacterium strains. Ph.D. Dissertation, University of Minnesota

  • Saunders JR & Saunders VA (1988) Bacterial transformation with plasmid DNA. In: Grinsted J & Bennett PM (Ed) Plasmid Technology (pp. 87–101). Academic Press, London

    Google Scholar 

  • Schell MA & Sukordhaman M (1989) Evidence that the transcription activator encoded by thePseudomonas putida nahR gene is evolutionarily related to the transcription activators encoded by the RhizobiumnodD genes. J. Bacteriol. 171: 1952–1959

    Google Scholar 

  • Schenk T, Müller R, Morsberger F, Otto MK & Lingens F (1989) Enzymatic dehalogenation of pentachlorophenol by extracts fromArthrobacter sp. strain ATCC 33790. J. Bacteriol. 171: 5487–5491

    Google Scholar 

  • Schingler V, Bartilson M & Moore T (1993) Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. J. Bacteriol. 175: 1596–1604

    Google Scholar 

  • Schlaman HRM, Okker RJH & Lugtenberg BJJ (1992) Regulation of nodulation gene expression by NodD in Rhizobia. J. Bacteriol. 174: 5177–5182

    Google Scholar 

  • Schreuder HA, Hol WGJ & Drenth J (1990) Analysis of the active site of the flavoproteinp-hydroxybenzoate hydroxylase and some ideas with respect to its reaction mechanism. Biochemistry 29: 3101–3108

    Google Scholar 

  • Stanlake GJ & Finn RK (1982) Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol. 44: 1421–1427

    Google Scholar 

  • Steiert JG & Crawford RL (1986) Catabolism of pentachlorophenol by aFlavobacterium sp. Biochem. Biophys. Res. Commun. 141: 825–830

    Google Scholar 

  • Steiert JG, Pignatello JJ & Crawford RL (1987) Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol. 53: 907–910

    Google Scholar 

  • Topp E, Crawford RL & Hanson RS (1988) Influence of readily metabolizable carbon on pentachlorophenol metabolism by a pentachlorophenol-degradingFlavobacterium sp. Appl. Environ. Microbiol. 54: 2452–2459

    Google Scholar 

  • Topp E & Hanson RS (1990) Degradation of pentachlorophenol by aFlavobacterium species grown in continuous culture under various nutrient limitations. Appl. Environ. Microbiol. 56: 541–544

    Google Scholar 

  • Tsuji H, Ogawa T, Bando N, Kimoto M & Sasaoka K (1990) A monoclonal antibody recognizing the FAD-binding site of 4-aminobenzoate hydroxylase fromAgaricus bisporus. J. Biol. Chem. 265: 16064–16067

    Google Scholar 

  • Tsunasawa S, Stewart JW & Sherman FS (1985) Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c: the specificities of methionine aminopeptidase and acetyltransferase. J. Biol. Chem. 260: 5382–5391

    Google Scholar 

  • Uotila JS, Kitunen VH, Apajalahti JHA & Salkinoja-Salonen MS (1992) Environment-dependent mechanism of dehalogenation byRhodococcus chlorophenolicus PCP-1. Appl. Microbiol. Biotechnology 38: 408–412

    Google Scholar 

  • Van der Meer JR, Fritjters ACJ, Leveau JHJ, Eggen RIL, Zehnder AJB & De Vos WM (1991) Characterization of thePseudomonas sp. strain P512 genetcbR, a LysR-type transcriptional activator of thetcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. J. Bacteriol. 173: 3700–3708

    Google Scholar 

  • Van der Meer JR, De Vos WM, Harayama S & Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56: 677–694

    Google Scholar 

  • Wierenga RK, Terpstra P & Hol WGJ (1986) Prediction of the occurrence of the ADP-binding βαβ-fold in proteins using an amino acid sequence fingerprint. J. Mol. Biol. 187: 101–107

    Google Scholar 

  • Xun L & Orser CS (1991a) Purification of aFlavobacterium pentachlorophenol-induced periplasmic protein (PcpA) and nucleotide sequence of the corresponding genepcpA. J. Bacteriol. 173: 2920–2926

    Google Scholar 

  • Xun L & Orser CS (1991b) Purification and properties of pentachlorophenol hydroxylase, a flavoprotein fromFlavobacterium sp. strain ATCC 39723. J. Bacteriol. 173: 4447–4453

    Google Scholar 

  • Xun L & Orser CS (1992) Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase fromFlavobacterium sp. J. Bacteriol. 174: 8003–8007

    Google Scholar 

  • Xun L, Topp E & Orser CS (1992a) Glutathione is the reducing agent for the reductive dehalogenation of tetrachloro-p-hydroquinone by extracts from aFlavobacterium sp. Biochem. Biophys. Res. Commun. 182: 361–366

    Google Scholar 

  • Xun L, Topp E & Orser CS (1992b) Diverse substrate range of aFlavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. J. Bacteriol. 174: 2898–2902

    Google Scholar 

  • Xun L, Topp E & Orser CS (1992c) Confirmation of oxidative dehalogenation of pentachlorophenol by aFlavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. J. Bacteriol. 174: 5745–5747

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orser, C.S., Lange, C.C. Molecular analysis of pentachlorophenol degradation. Biodegradation 5, 277–288 (1994). https://doi.org/10.1007/BF00696465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696465

Key words

Navigation