Skip to main content
Log in

Characterization of a specific L-[3H]glutamic acid binding site on cilia isolated fromParamecium tetraurelia

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

Cilia isolated fromParamecium tetraurelia possess a specific, high affinity L-[3H]glutamic acid binding site, defined by an ED50 of 3.0×10−8 M. The structural specificity of this site was probed by testing the competition between L-glutamate and various analogues for binding to cilia. The binding site is stereo-specific for L-glutamic acid, and requires the presence of all three ionizable groups on the glutamate molecule for optimal ligand: receptor interaction.

Specific binding of L-[3H]glutamic acid to cilia is rapid in onset but transient, reaching peak values within 6 min, and then declining thereafter. This transience may represent a form of sensory adaptation during prolonged exposure to the ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adoutte A, Ramanathan R, Lewis RM, Dute RR, Ling K-Y, Kung C, Nelson DL (1980) Biochemical studies of the excitalble membrane ofParamecium tetraurelia. III. Proteins of cilia and ciliary membranes. J Cell Biol 84:717–738

    Google Scholar 

  • Aomine M (1981) The amino acid absorption and transport in protozoa. Comp Biochem Physiol 68A:531–540

    Google Scholar 

  • Barber VC (1974) Cilia in sense organs. In: Sleigh MA (ed) Cilia and flagella. Academic Press, London, pp 403–433

    Google Scholar 

  • Brugerolle G, Andrivon C, Bohatier J (1980) Isolation, protein pattern and enzymatic characterization of the ciliary membrane ofParamecium tetraurelia. Biol Cellulaire 37:251–260

    Google Scholar 

  • Bumann J, Malchow D (1986) Cyclic AMP-induced reversible decrease in cAMP-binding to cell surface receptors inDictyostelium discoideum. FEMS Microbiol Lett 33:99–103

    Google Scholar 

  • Caprio J (1984) Olfaction and taste in fish. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative physiology of sensory systems. Cambridge University Press, New York, pp 257–283

    Google Scholar 

  • Christensen HN (1972) Nature and roles of receptor sites for amino acid transport. Adv Biochem Psychopharmacol 4:39–62

    Google Scholar 

  • Csaba G, Madarasz B (1979) Localization of concanavalin-A binding sites inTetrahymena by scanning EM. Experientia 35:1181–1183

    Google Scholar 

  • Csaba G, Sudar F, Nagy U, Dobozy O (1977) Localization of hormone receptors inTetrahymena. Protoplasma 91:179–189

    Google Scholar 

  • Dunlap K (1977) Localization of calcium channels inParamecium caudatum. J Physiol 271:119–133

    Google Scholar 

  • Eckert R (1972) Bioelectric control of ciliary activity. Science 176:473–481

    Google Scholar 

  • Fukushi T, Hiwatashi C (1970) Preparation of mating reactive cilia fromParamecium caudatum by MnCl2. J Protozool 17:21A

    Google Scholar 

  • Foster AC, Fagg GE (1984) Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res Rev 7:103–164

    Google Scholar 

  • Hazelbauer GL, Harayama S (1983) Sensory transduction in bacterial chemotaxis. Int Rev Cytol 81:33–70

    Google Scholar 

  • Klein C, Lubs-Haukeness J, Simons S (1985) cAMP induces a rapid and reversible modification of the chemotactic receptor inDictyostelium discoideum. J Cell Biol 100:715–720

    Google Scholar 

  • Kovacs P, Csaba G (1980) Detection of histamine binding sites (receptors) inTetrahymena by fluorescence technique. Acta Biol Med Ger 39:237–241

    Google Scholar 

  • Kung C (1979) Biology and genetics ofParamecium behavior. In: Breakefield XO (ed) Neurogenetics: genetic approaches to the nervous system. Elsevier, New York, pp 1–26

    Google Scholar 

  • Machemer H, Ogura A (1979) Ionic conductances of membranes in ciliated and deciliatedParamecium. J Physiol 296:49–60

    Google Scholar 

  • Ordal GW (1985) Bacterial chemotaxis: biochemistry of behavior in a single cell. Crit Rev Microbiol 12:95–130

    Google Scholar 

  • Oxender DL (1972) Amino acid transport in microorganisms. In: Hokin LE (ed) Metabolic pathways (vol VI). Academic Press, New York, pp 133–185

    Google Scholar 

  • Preston RR (1983) Studies on the responses ofParamecium tetraurelia to amino acids. PhD Thesis, University of Nottingham

  • Ramanathan R, Adoutte A, Dute RR (1981) Biochemical studies of the excitable membrane ofParamecium tetraurelia. V. Effects of proteases on the ciliary membrane. Biochim Biophys Acta 641:349–365

    Google Scholar 

  • Rhein LD, Cagan RH (1981) Role of cilia in olfactory recognition. In: Cagan RH, Kare MR (eds) Biochemistry of taste and olfaction. Academic Press, New York, pp 47–68

    Google Scholar 

  • Usherwood PNR (1978) Glutamate receptors in eucaryotes. Adv Pharmacol Therapeut 1:107–116

    Google Scholar 

  • Wyroba E, Przelecka A (1973) Studies on the surface coat ofParamecium aurelia. I. Ruthenium red staining and enzyme treatment. Z Zellforsch 143:343–353

    Google Scholar 

  • Yonekawa H, Hayashi H (1986) Desensitization by covalent modification of the chemoreceptor ofEscherichia coli. FEBS Lett 198:21–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preston, R.R., Usherwood, P.N.R. Characterization of a specific L-[3H]glutamic acid binding site on cilia isolated fromParamecium tetraurelia . J Comp Physiol B 158, 345–351 (1988). https://doi.org/10.1007/BF00695333

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695333

Keywords

Navigation