Skip to main content
Log in

Biotransformation of anisole and phenetole by aerobic hydrocarbonoxidizing bacteria

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Wild type, mutant, and recombinant bacterial strains capable of oxidizing aromatic hydrocarbons were screened for their ability to oxidize anisole (methoxybenzene) and phenetole (ethoxybenzene). Toluene-induced cells ofPseudomonas putida F39/D transformed anisole to a compound tentatively identified ascis-1,2-dihydroxy-3-methoxyclohexa-3,5-diene (anisole-2,3-dihydrodiol), 2-methoxyphenol, catechol, and trace amounts of phenol while phenetole was converted primarily tocis-1,2-dihydroxy-3-ethoxycyclohexa-3,5-diene (phenetole-2,3-dihydrodiol) and 2-ethoxyphenol. Induced cells ofPseudomonas sp. NCIB 9816/11 andBeijerinckia sp. B8/36 transformed anisole to phenol, and phenetole to phenol and ethenyloxybenzene. Toluene-induced cells ofP. putida BG1 converted anisole to phenol but did not oxidize phenetole. In contrast, toluene-induced cells ofP. mendocina KR1, which oxidize toluene via monooxygenation at thepara position, transformed anisole to 4-methoxyphenol, and phenetole to 2-, 3- and 4-ethoxyphenol. The involvement of toluene and naphthalene dioxygenases in the reactions catalyzed by strains F39/D and NCIB 9816/11, respectively, was confirmed with recombinantE. coli strains expressing the cloned dioxygenase genes. The results show that the oxygenases from differentPseudomonas strains oxidize anisole and phenetole to different hydroxylated products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnsley EA (1975) The induction of the enzymes of naphthalene metabolism in pseudomonads by salicylate and 2-aminobenzoate. J. Gen. Microbiol. 88: 193–196

    Google Scholar 

  • Bernhardt F-H, Bill E, Trautwein AX & Twilfer H (1988) 4-Methoxybenzoate monooxygenase fromPseudomonas putida: Isolation, biochemical properties, substrate specificity, and reaction mechanisms of the enzyme components. Meth. Enzymol. 281–294

  • Bernhardt F-H, Erdin N, Staudinger H & Ullrich V (1973) Interactions of substrates with a purified 4-methoxybenzoate monooxygenase system (O-demethylating) fromPseudomonas putida. Eur. J. Biochem. 35: 126–134

    Google Scholar 

  • Cartwright NJ, Holdom KS & Broadbent DA (1971) Bacterial attack on phenolic ethers. Dealkylation of higher ethers and further observations onO-demethylases. Microbios 3: 113–130

    Google Scholar 

  • Cartwright NJ & Smith AR (1967) Bacterial attack on phenolic ethers. An enzyme system demethylating vanillic acid. Biochem. J. 102: 826–841.

    Google Scholar 

  • Chapman PJ (1972) An outline of reaction sequences used for the bacterial degradation of phenolic compounds. In: Degradation of Synthetic Organic Molecules in the Biosphere: Natural, Pesticidal, and Various Other Man-made Compounds (pp 17–45). National Academy of Sciences, Washington, DC

    Google Scholar 

  • Dagley S, Chapman PJ, Gibson DT & Wood JM (1964) Degradation of the benzene nucleus by bacteria. Nature 202: 775–778

    Google Scholar 

  • Gibson DT, Hensley M, Yoshioka H & Mabry TJ (1970) Formation of (+)-cis-2,3-dihydroxyl-1-methylcyclohexa-4,6-diene from toluene byPseudomonas putida. Biochemistry 9: 1626–1630

    Google Scholar 

  • Gibson DT, Roberts RL, Wells MC & Kobal VM (1973) Oxidation of biphenyl by aBeijerinckia species. Biochem. Biophys. Res. Commun. 50: 211–219

    Google Scholar 

  • Gibson DT, Zylstra GJ & Chauhan S (1990) Biotransformations catalyzed by toluene dioxygenase fromPseudomonas putida F1. In: Silver S (Ed)Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology (pp 121–132). Am. Soc. Microbiol., Washington, DC

    Google Scholar 

  • Haigler BE (1986) Purification and Properties of the Naphthalene Dioxygenase fromPseudomonas putida. Ph. D. dissertation. The University of Texas, Austin, TX

    Google Scholar 

  • Jeffrey AM, Yeh HJC, Jerina DM, Patel TR, Davey JF & Gibson DT (1975) Initial reactions in the oxidation of naphthalene byPseudomonas putida. Biochemistry 14: 575–583

    Google Scholar 

  • Jerina DM, Daly JW, Jeffrey AM & Gibson DT (1971)cis-1,2-Dihydroxy-1,2-dihydronaphthalene: A bacterial metabolite from naphthalene. Arch. Biochem. Biophys. 142: 394–396

    Google Scholar 

  • Kukor JJ & Olsen RH (1990) Molecular cloning, characterization, and regulation of aPseudomonas pickettii PKO1 gene encoding phenol hydroxylase and expression of the gene inPseudomonas aeruginosa PAO1c. J. Bacteriol. 172: 4624–4630

    Google Scholar 

  • Mahaffey WR, Gibson DT & Cerniglia CE (1988) Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz[a]anthracene. Appl. Environ. Microbiol. 54: 2415–2423

    Google Scholar 

  • Menn F-M (1991) Studies on 3-Methylcatechol 2,3-Dioxygenase and 2-Hydroxy-6-Oxohepta-2,4-Dienoate Hydrolase: Key Enzymes in the Degradation of Toluene byPseudomonas putida F1. Ph. D. dissertation. The University of Iowa, Iowa City, IA

    Google Scholar 

  • Renganathan V & Johnston JB (1989) Catechols of novel substrates produced using the toluene ring oxidation pathway ofPseudomonas sp. strain T-12. Appl. Microbiol. Biotechnol. 31: 419–424

    Google Scholar 

  • Ribbons DW (1970) Stoichiometry ofO-demethylase activity inPseudomonas aeruginosa. FEBS Letters 8: 101–104

    Google Scholar 

  • Ribbons DW (1971) Requirement of two protein fractions forO-demethylase activity inPseudomonas testosteroni. FEBS Letters 12: 161–165

    Google Scholar 

  • Ribbons DW & Harrison JE (1972) Metabolism of methoxy- and methylenedioxyphenyl compounds by bacteria. In: Degradation of Synthetic Organic Molecules in the Biosphere: Natural, Pesticidal, and Various Other Man-made Compounds (pp 99–115). National Academy of Sciences, Washington, DC

    Google Scholar 

  • Shields MS, Montgomery SO, Chapman PJ, Cuskey SM & Pritchard PH (1989) Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4. Appl. Environ. Microbiol. 55: 1624–1629

    Google Scholar 

  • Shields MS, Montgomery SO, Cuskey SM, Chapman PJ & Pritchard PH (1991) Mutants ofPseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene. Appl. Environ. Microbiol. 57: 1935–1941

    Google Scholar 

  • Spain JC, Zylstra GJ, Blake CK & Gibson DT (1989) Monohydroxylation of phenol and 2,5-dichlorophenol by toluene dioxygenase inPseudomonas putida F1. Appl. Environ. Microbiol. 55: 2648–2652

    Google Scholar 

  • Stanier RY, Palleroni NJ & Doudoroff M (1966) The aerobic pseudomonads; a taxonomic study. J. Gen. Microbiol. 43: 159–271

    Google Scholar 

  • Suen W-C (1991) Gene Expression of Naphthalene Dioxygenase fromPseudomonas sp. NCIB 9816-4 inEscherichia coli. Ph. D. dissertation. The University of Iowa, Iowa City, IA

    Google Scholar 

  • Sugihara JM & Bowman CM (1958) Cyclic benzeneborate esters. J. Am. Chem. Soc. 80: 2443–2446

    Google Scholar 

  • Wackett LP, Kwart LD & Gibson DT (1988) Benzylic monooxygenation catalyzed by toluene dioxygenase fromPseudomonas putida. Biochemistry 27: 1360–1367

    Google Scholar 

  • Whited GM & Gibson DT (1991) Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene top-cresol inPseudomonas mendocina KR1. J. Bacteriol. 173: 3010–3016

    Google Scholar 

  • Whited GM, McCombie WR, Kwart LD & Gibson DT (1986) Identification ofcis-diols as intermediates in the oxidation of aromatic acids by a strain ofPseudomonas putida that contains a TOL plasmid. J. Bacteriol. 166: 1028–1039

    Google Scholar 

  • Young LY (1984) Anaerobic degradation of aromatic compounds. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds (pp 487–523). Marcel Decker, New York, NY

    Google Scholar 

  • Ziffer H, Jerina DM, Gibson DT & Kobal VM (1973) Absolute stereochemistry of the (+)-cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene produced from toluene byPseudomonas putida. J. Am. Chem. Soc. 95: 4048–4049

    Google Scholar 

  • Ziffer H, Kabuto K, Gibson DT, Kobal VM & Jerina DM (1977) The absolute stereochemistry of severalcis-dihydrodiols microbially produced from substituted benzenes. Tetrahedron 33: 2491–2496

    Google Scholar 

  • Zylstra GJ & Gibson DT (1991) Aromatic hydrocarbon degradation: A molecular approach. In: Genetic Engineering: Principles and Methods (pp 183–203). Plenum Press, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resnick, S.M., Gibson, D.T. Biotransformation of anisole and phenetole by aerobic hydrocarbonoxidizing bacteria. Biodegradation 4, 195–203 (1993). https://doi.org/10.1007/BF00695122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695122

Key words

Navigation