Skip to main content
Log in

Vertical column abundances of HCN deduced from ground-based infrared solar spectra: Long-term trend and variability

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A set of high-resolution IR solar spectra recorded at the International Scientific Station of the Jungfraujoch, Switzerland, from 84/06 to 93/06, and at the National Solar Observatory McMath-Pierce solar telescope facility on Kitt Peak, Arizona, U.S.A. from 78/05 to 92/07 have been analyzed to determine the vertical column abundances of hydrogen cyanide, HCN, above the two stations. The analysis was based on least-squares curve fitting of calculated spectra to the observations encompassing the P4 and the P8 lines of HCN respectively located at 3299.5273 and 3287.2483 cm−1. The results obtained for the two stations indicate that no significant long-term trend affects either of the two databases; however, this analysis reveals variable increases during springtime of up to a factor of 2 in the HCN total column above the Jungfraujoch and even up to 3 above Kitt Peak. The calculated mean vertical column abundances, excluding the spring observations, are equal to (2.55±0.30)×1015 molec./cm2 (S.D.) and (2.75±0.30)×1015 molec./cm2 respectively above the Jungfraujoch and the Kitt Peak observatories. Based on a realistic volume mixing ratio profile, these columns translate into mean volume mixing ratios equal to 190×10−12 ppv at the respective altitudes of the stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, M. M., Guo, J., Carli, B., Mencaraglia, F., Carlotti, M., and Nolt, I. G., 1987, Stratospheric distribution of HCN from far infrared observations,Geophys. Res. Lett. 14, 531–534.

    Google Scholar 

  • Brasseur, G., Zellner, R., De Rudder, A., and Arijs, E., 1985, Is hydrogen cyanide (HCN) a progenitor of acetonitrile (CH3CN) in the atmopshere,Geophys. Res. Lett. 12, 117–120.

    Google Scholar 

  • Brault, J. W., 1978, Solar Fourier transform spectroscopy, in G. Godoli, G. Noci, and A. Righini (eds.), JOSO Workshop,Osser. Mem. Osserv. Astrofis. Arcetri 106, pp. 32–52.

    Google Scholar 

  • Carli, B., Mencaraglia, F., and Bonetti, A., 1982, New assignments in the submillimeter emission spectrum of the stratosphere,Int. J. Infrared Millimeter Waves 3, 385–394.

    Google Scholar 

  • Carli, B., Mencaraglia, F., and Bonetti, A., 1984, Submillimeter high-resolution FT spectrometer for atmospheric studies,Appl. Opt. 20, 2594–2603.

    Google Scholar 

  • Carli, B., and Park, J., 1988, Simultaneous measurement of minor stratospheric constituents with emission far-infrared spectroscopy,J. Geophys. Res. 93, 3851–3865.

    Google Scholar 

  • Cicerone, R. J. and Zellner, R., 1983, The atmospheric chemistry of hydrogen cyanide (HCN),J. Geophys. Res. 88, 10689–10696.

    Google Scholar 

  • Coffey, M. T. and Goldman, A., 1981, Atmospheric hydrogen cyanide absorption near 14 microns,Appl. Opt. 20, 3480–3481.

    Google Scholar 

  • Coffey, M. T., Mankin, W. G., and Cicerone, R. J., 1981, Spectroscopic detection of stratospheric hydrogen cyanide,Science 214, 333–334.

    Google Scholar 

  • Cottrell, A., 1967, An introduction to metallurgy, St. Martins, New York.

    Google Scholar 

  • Grosick, H. A. and Kovacic, J. E., 1981, Coke-oven gas and effluent treatment, in M. A. Elliot (ed.),Chemistry of Coal Utilization, Interscience, New York, pp. 1085–1152.

    Google Scholar 

  • Hawkins, R. L., Nordstrom, R. J., and Shaw, J. H., 1980, The spectrum of N2O between 800 and 5200 cm−1, interim tech. rep. RF Proj. 761420/711626, Ohio State Univ., Columbus.

    Google Scholar 

  • Jamarillo, M., de Zafra, R. L., Barrett, J. W., Parrish, A., and Solomon, P. M., 1988a, mm-Wave observations of stratospheric HCN at tropical latitudes,Geophys. Res. Lett. 15, 265–268.

    Google Scholar 

  • Jamarillo, M., de Zafra, R. L., Barrett, J. W., and Emmons, L. K., 1988b, Measurements of hydrogen cyanide as a trace of stratospheric transport,Antarctic J. 23, 158–159.

    Google Scholar 

  • Malbrouck, R., 1977, Spectroscopie à très haute résolution par transformée de Fourier — Application à l'étude du spectre solaire, Ph.D. thesis, Univ. Liège, Liège, Belgium.

    Google Scholar 

  • Rinsland, C. P., Smith, M. A. H., Rinsland, P. L., Goldman, A., Brault, J. W., and Stokes, G. M., 1982, Ground-based infrared spectroscopic measurements of atmospheric hydrogen cyanide,J. Geophys. Res. 87, 1119–11125.

    Google Scholar 

  • Rinsland, C. P., Levine, J. S., Goldman, A., Sze, N. D., Ko, M. K. W., and Johnson, D. W., 1991, Infrared measurements of HF and HCl total column abundances above Kitt Peak, 1977–1990: Seasonal cycles, long-term increases, and comparisons with model calculations,J. Geophys. Res. 96, 15523–15540.

    Google Scholar 

  • Rinsland, C. P., Zander, R., Mahieu, E., Demoulin, P., Goldman, A., Ehhalt, D., and Rudolph, J., 1992, Ground-based infrared measurements of carbonyl sulfide total column abundances: Long-term trends and variability,J. Geophys. Res. 97, 5995–6002.

    Google Scholar 

  • Rothman, L. S.,et al., 1992, The HITRAN molecular database: Editions of 1991 and 1992,J. Quant. Spectrosc. Radiat. Transfer 48, 469–508.

    Google Scholar 

  • Smith, M. A. H. and Rinsland, C. P., 1985, Spectroscopic measurements of atmospheric HCN at Northern and Southern Latitudes,Geophys. Res. Lett. 12, 5–8.

    Google Scholar 

  • Smith, D. H., Hoke, M. L., Hawkins, R. A., and Shaw, J. H., 1981, A spectrum of carbon dioxide from 800 to 5500 cm−1, interim tech. rep., RF Proj. 761420/711626, Ohio State Univ., Columbus.

    Google Scholar 

  • Toon, G. C., Farmer, C. B., Lowes, L. L., Schaper, P. W., Blavier, J.-F., and Norton, R. H., 1989, Infrared aircraft measurements of stratospheric composition over Antarctica during September 87,J. Geophys. Res. 94, 16571–16596.

    Google Scholar 

  • Toon, G. C., Farmer, C. B., Schaper, P. W., Lowes, L. L., and Norton, R. H., 1992, Composition measurements of the 1989 Arctic winter stratosphere by airborne infrared solar absorption spectroscopy,J. Geophys. Res. 97, 7939–7961.

    Google Scholar 

  • Zander, R., Rinsland, C. P., Farmer, C. P., Namkung, J., Norton, R. H., and Russell, J. M., 1988, Concentrations of carbonyl sulfide and hydrogen cyanide in the free upper troposphere and lower stratosphere deduced from ATMOS/Spacelab 3 infrared solar occultation spectra,J. Geophys. Res. 93, 1669–1678.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahieu, E., Rinsland, C.P., Zander, R. et al. Vertical column abundances of HCN deduced from ground-based infrared solar spectra: Long-term trend and variability. J Atmos Chem 20, 299–310 (1995). https://doi.org/10.1007/BF00694499

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694499

Key words

Navigation