Skip to main content
Log in

Numerical study of the oxidation process of dimethylsulfide in the marine atmosphere

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A box model, involving simple heterogeneous reaction processes associated with the production of non-sea-salt sulfate (nss-SO 2−4 ) particles, is used to investigate the oxidation processes of dimethylsulfide (DMS or CH3SCH3) in the marine atmosphere. The model is applied to chemical reactions in the atmospheric surface mixing layer, at intervals of 15 degrees latitude between 60° N and 60° S. Given that the addition reaction of the hydroxyl radical (OH) to the sulfur atom in the DMS molecule is faster at lower temperature than at higher temperature and that it is the predominant pathway for the production of methanesulfonic acid (MSA or CH3SO3H), the results can well explain both the increasing tendency of the molar ratio of MSA to nss-SO 2−4 toward higher latitudes and the uniform distribution with latitude of sulfur dioxide (SO2). The predicted production rate of MSA increases with increasing latitude due to the elevated rate constant of the addition reaction at lower temperature. Since latitudinal distributions of OH concentration and DMS reaction rate with OH are opposite, a uniform production rate of SO2 is realized over the globe. The primary sink of DMS in unpolluted air is caused by the reaction with OH. Reaction of DMS with the nitrate radical (NO3) also reduces DMS concentration but it is less important compared with that of OH. Concentrations of SO2, MSA, and nss-SO 2−4 are almost independent of NO x concentration and radiation field. If dimethylsulfoxide (DMSO or CH3S(O)CH3) is produced by the addition reaction and further converted to sulfuric acid (H2SO4) in an aqueous solution of cloud droplets, the oxidation process of DMSO might be important for the production of aerosol particles containing nss-SO 2−4 at high latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, M. O. and Raemdonck, H., 1983, Dimethyl sulfide in the surface ocean and the marine atmosphere: A global view,Science 221, 744–747.

    Google Scholar 

  • Andreae, M. O., Ferek, R. J., Bermond, F., Byrd, K. P., Engstrom, R. T., Hardin, S., Houmere, P. D., LeMarrec, F., Raemdonck, H., and Chatfield, R. B., 1985, Dimethyl sulfide in the marine atmosphere,J. Geophys. Res. 90, 12891–12900.

    Google Scholar 

  • Ayers, G. P. and Gras, J. L., 1991,Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air, Nature 353, 834–835.

    Google Scholar 

  • Ayers, G. P., Ivey, J. P., and Gillett, R. W., 1991, Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air,Nature 349, 404–406.

    Google Scholar 

  • Bandy, A. R., Scott, D. L., Blomquist, B. W., Chen, S. M., and Thornton, D. C., 1992,Geophys. Res. Lett. 19, 1125–1127.

    Google Scholar 

  • Barnes, I., Bastian, V., and Becker, K. H., 1988, Kinetics and mechanisms of the reaction of OH radicals with dimethyl sulfide,Int. J. Chem. Kinet. 20, 415–431.

    Google Scholar 

  • Bates, T. S., Cline, J. D., Gammon, R. H., and Kelly-Hamsen, S. R., 1987, Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere,J. Geophys. Res. 92, 2930–2938.

    Google Scholar 

  • Bates, T. S., Johnson, J. E., Quinn, P. K., Goldan, P. D., Kuster, W. C., Covert, D. C., and Hahn, C. J., 1990, The biogeochemical sulfur cycle in the marine boundary layer over the northeast Pacific Ocean,J. Atmos. Chem. 10, 59–81.

    Google Scholar 

  • Bates, T. S., Calhoun, J. A., and Quinn, P. A., 1992, Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the South Pacific Ocean,J. Geophys. Res. 97, 9859–9865.

    Google Scholar 

  • Berresheim, H., 1987, Biogenic sulfur emissions from the Subantarctic and Antarctic Oceans,J. Geophys. Res. 92, 13245–13262.

    Google Scholar 

  • Berresheim, H., Andreae, M. O., Ayers, G. P., Gillett, R. W., Merrill, J. T., Davis, V. J., and Chameides, W. L., 1990, Airborne measurements of dimethylsulfide, sulfur dioxide, and aerosol ions over the Southern Ocean south of Australia,J. Atmos. Chem. 10, 341–370.

    Google Scholar 

  • Berresheim, H., Andreae, M. O., Iverson, R. L., and Li, S. M., 1991, Seasonal variations of dimethylsulfide emissions and atmospheric sulfur and nitrogen species over the western north Atlantic Ocean,Tellus 43, 353–372.

    Google Scholar 

  • Bonsang, B., Nguyen, B. C., and Lambert, G., 1987, Comment on ‘The residence time of aerosols and SO2 in the long-range transport over the ocean’, by Itoet al., J. Atmos. Chem. 5, 367–369.

    Google Scholar 

  • Bottenheim, J. W., Braslavsky, S. E., and Strausz, O. P., 1977, Modeling study of seasonal effect on air pollution at 60° N latitude,Environ. Sci. Technol. 11, 801–808.

    Google Scholar 

  • Chameides, W. L., and Tan, A., 1981, The two-dimensional diagnostic model for tropospheric OH: An uncertainty analysis,J. Geophys. Res. 86, 5209–5223.

    Google Scholar 

  • Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G., 1987, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate,Nature 326, 655–661.

    Google Scholar 

  • Chubachi, S., 1985, Surface ozone observation at Syowa Station, Antarctica from February 1982 to January 1983,Mem. Nat. Inst. Polar Res., Spec. Issue 39, 63–68.

    Google Scholar 

  • Connel, P. and Johnston, H. S., 1979, The thermal dissociation of N2O5 in N2,Geophys. Res. Lett. 6, 553–556.

    Google Scholar 

  • Cooper, D. J. and Saltzman, E. S., 1991, Measurements of atmospheric dimethyl sulfide and carbon disulfide in the western Atlantic boundary layer,J. Atmos. Chem. 12, 153–168.

    Google Scholar 

  • Crutzen, P. J., 1976, The possible importance of COS for the sulfate layer of the stratosphere,Geophys. Res. Lett. 3, 74–76.

    Google Scholar 

  • Dlugokencky, E. J. and Howard, C. J., 1988, Laboratory studies of NO3 radical reactions with some atmospheric sulfur compounds,J. Phys. Chem. 92, 1188–1993.

    Google Scholar 

  • Finlayson-Pitts, B. J. and Pitts Jr., J. N., 1986,Atmospheric Chemistry: Fundamental and Experimental Techniques, Wiley, New York.

    Google Scholar 

  • Fröhlich, C. and Shaw, G. E., 1980, New determination of Rayleigh scattering in the terrestrial atmosphere,Appl. Opt. 19, 1773–1775.

    Google Scholar 

  • Fushimi, K. and Miyake, Y., 1980, Contents of formaldehyde in the air above the surface of the ocean,J. Geophys. Res. 85, 7533–7536.

    Google Scholar 

  • Galbally, I. E., 1975, Emissions of oxides of nitrogen (NO x ) and ammonia from the earth's surface,Tellus 27, 67–70.

    Google Scholar 

  • Galloway, J. N., 1985, The deposition of sulfur and nitrogen from the remote atmosphere, background paper inThe Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere, D. Reidel, Dordrecht, pp. 143–175.

    Google Scholar 

  • Hatakeyama, S. and Akimoto, H., 1983, Reactions of OH radicals with methanethiol, dimethyl sulfide, and dimethyl disulfide in air,J. Phys. Chem. 87, 2387–2395.

    Google Scholar 

  • Heidt, L. E., Krasnec, J. P., Lueb, R. A., Pollock, W. H., Henry, B. E., and Crutzen, P. J., 1980, Latitudinal distributions of CO and CH4 over the Pacific,J. Geophys. Res. 85, 7329–7336.

    Google Scholar 

  • Hicks, B. B. and Liss, P. S., 1976, Transfer SO2 and other reactive gases across the air-sea interface,Tellus 28, 348–354.

    Google Scholar 

  • Huebert, B. J. and Lazrus, A. L., 1980, Tropospheric gas-phase and particulate nitrate measurements,J. Geophys. Res. 85, 7322–7328.

    Google Scholar 

  • Hynes, A. J., Wine, P. H., and Semmes, D. H., 1986, Kinetics and mechanism of OH reactions with organic sulfides,J. Phys. Chem. 90, 4148–4156.

    Google Scholar 

  • Jacob, D. J., 1986, Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate,J. Geophys. Res. 91, 9807–9826.

    Google Scholar 

  • Junge, C. E., 1964, The modification of aerosol size distribution in the atmosphere,Final Tech. Report, Contract-Da 91-591-EVC 2979, European Research Office, U.S. Army.

    Google Scholar 

  • Koga, S., Tanaka, H., Yamato, M., Yamanouchi, T., Nishio, F., and Iwasaka, Y., 1991, Methanesulfonic acid and non-sea-salt sulfate over both hemispheric oceans,J. Meteor. Soc. Japan. 69, 1–14.

    Google Scholar 

  • Koga, S., Tanaka, H., and Hayashi, M., 1992, Dimethylsulfide measured in the western Pacific and the southern Indian Ocean,J. Meteor. Soc. Japan 71, 183–194.

    Google Scholar 

  • Kolaitis, L. N., Bruynseels, F. J., Grieken, R. E. V., and Andreae, M. O., 1989, Determination of methanesulfonic acid and non-sea-salt sulfate in single marine aerosol particles,Environ. Sci. Technol. 23, 236–240.

    Google Scholar 

  • Kritz, M. A., 1982, Exchange of sulfur between the free troposphere, marine boundary layer, and the sea surface,J. Geophys. Res. 87, 8795–8803.

    Google Scholar 

  • Liu, S. C., McFarland, M., Kley, D., Zafiriou, O., and Huebert, B., 1983, Tropospheric NO x and O3 budgets in the equatorial Pacific,J. Geophys. Res. 88, 1360–1368.

    Google Scholar 

  • Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981, Tropospheric chemistry: A global perspective,J. Geophys. Res. 86, 7210–7254.

    Google Scholar 

  • Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A., 1972, Atmospheric dimethyl sulfide and the natural sulfur cycle,Nature 237, 452–453.

    Google Scholar 

  • Lowe, D. C. and Schmidt, U., 1983, Formaldehyde (HCHO) measurements in the nonurban atmosphere,J. Geophys. Res. 88, 10844–10858.

    Google Scholar 

  • Machida, M., Tanaka, S., and Hashimoto, Y., 1990, Concentrations of MSA, and SO2, and nss-SO 2−4 in the marine atmosphere, and the flux of DMS from the ocean, paper presented at the 13th National Institute of Polar Research Symposium on Polar Meteorology and Glaciology, Tokyo, Japan, July 1990.

  • Matsubara, K. and Kawaguchi, S., 1983, Spectral extinction measurement by sunphotometer at Syowa station, Antarctica,Mem. Nat. Inst. Polar Res., Spec. Issue 29, 85–93.

    Google Scholar 

  • McCartney, E. J. (1976).Optics of the Atmosphere: Scattering by Molecules and Particles, Wiley, New York.

    Google Scholar 

  • McEwan, M. J. and Phillips, L. F., 1975,Chemistry of the Atmosphere, Appendix, Edward Arnold, London.

    Google Scholar 

  • McFarland, M., Kley, D., Drummond, J. W., Schmeltekopf, A. L., and Winkler, R. H., 1979, Nitric oxide measurements in the equatorial Pacific region,Geophys. Res. Lett. 6, 605–608.

    Google Scholar 

  • Mihalopoulos, N., Putaud, J. P., Nguyen, B. C., and Belviso, S., 1991, Annual variation of atmospheric carbonyl sulfide in the marine atmosphere in the southern Indian Ocean,J. Atmos. Chem. 13, 73–82.

    Google Scholar 

  • Milne, P. J., Zika, R., and Saltzman, E. S., 1989, Rate of reaction of methanesulfonic acid, dimethyl sulfoxide, and dimethyl sulfone with hydroxyl radical in aqueous solution, in E. S. Saltzman, and W. J. Cooper (eds.),Biogenic Sulfur in the Environment, American Chemical Society, Washington, DC, pp. 518–528.

    Google Scholar 

  • Nguyen, B. C., Mihalopoulos, N., and Belviso, S., 1990, Seasonal variation of atmospheric dimethylsulfide at Amsterdam Island in the Southern Indian Ocean,J. Atmos. Chem. 11, 123–141.

    Google Scholar 

  • Nguyen, B. C., Mihalopoulos, N., Putaud, J. P., Gaudry, A., Gallet, L., Keene, W. C., and Galloway, J. N., 1992, Covariations in oceanic dimethyl sulfide, its oxidation products and rain acidity at Amsterdam Island in the southern Indian Ocean,J. Atmos. Chem. 15, 39–53.

    Google Scholar 

  • Noxon, J. F., 1983, NO3 and NO2 in the Mid-Pacific troposphere,J. Geophys. Res. 88, 11017–11021.

    Google Scholar 

  • Penn, R. E., Block, E., and Revelle, L. K., 1978, Methanesulfenic acid,J. Am. Chem. Soc. 100, 3622–3623.

    Google Scholar 

  • Pszenny, A. A. P., Harvey, G. R., Brown, C. J., Lang, R. F., Keene, W. C., Galloway, J. N., and Merrill, J. T., 1990, Measurements of dimethyl sulfide oxidation products in the summertime North Atlantic marine boundary layer,Global Biogeochem. Cycles 4, 367–379.

    Google Scholar 

  • Putaud, J. P., Mihalopoulos, N., Nguyen, B. C., Campin, J. M., 1992, Seasonal variations of atmospheric sulfur dioxide and dimethylsulfide concentrations at Amsterdam Island in the southern Indian Ocean,J. Atmos. Chem. 15, 117–131.

    Google Scholar 

  • Routhier, F., Dennett, R., Davis, D. D., Wartburg, A., Haagenson, P., and Delany, A. C., 1980, Free tropospheric and boundary-layer airborne measurements of ozone over the latitude range of 58° S to 70° N,J. Geophys. Res. 85, 7307–7321.

    Google Scholar 

  • Saltzman, E. S., Savoie, D. L., Prospero, J. M., and Zika, R. G., 1986, Methanesulfonic acid and non-sea-salt sulfate in Pacific air: Regional and seasonal variations,J. Atmos. Chem. 4, 227–240.

    Google Scholar 

  • Saltzman, E. S. and Cooper, D. J., 1988, Shipboard measurements of atmospheric dimethylsulfide and hydrogen sulfide in the Caribbean and Gulf of Mexico,J. Atmos. Chem. 7, 191–209.

    Google Scholar 

  • Savoie, D. L. and Prospero, J. M., 1989, Comparison of oceanic and continental sources of non-sea-salt sulphate over the Pacific Ocean,Nature 339, 685–687.

    Google Scholar 

  • Shaw, G. E., 1979, Aerosols at Mauna Loa: Optical properties,J. Atmos. Sci. 36, 862–869.

    Google Scholar 

  • Shaw, G. E., 1982, Atmospheric turbidity in the polar regions,J. Appl. Meteor. 21, 1080–1088.

    Google Scholar 

  • Thompson, A. M. and Cicerone, R. J., 1982, Clouds and wet removal as causes of variability in the trace-gas composition of the marine troposphere,J. Geophys. Res. 87, 8811–8826.

    Google Scholar 

  • Toon, O. B., Kasting, J. F., Turco, R. P., and Liu, M. S., 1987, The sulfur cycle in the marine atmosphere,J. Geophys. Res. 92, 943–963.

    Google Scholar 

  • Vairavamurthy, A., Andreae, M. O., and Iverson, R. L., 1985, Biosynthesis of dimethylsulfide and dimethylpropiothetin byHymenomonas carterae in relation to sulfur source and salinity variations,Limnol. Oceanogr. 30, 59–70.

    Google Scholar 

  • Warneck, P., 1988,Chemistry of the Natural Atmosphere, Academic Press, San Diego, Appendix Table A-5.

    Google Scholar 

  • Watts, S. F., Watson, A., and Brimblecombe, P., 1987, Measurements of the aerosol concentrations of methane sulphonic acid, dimethyl sulphoxide and dimethyl sulphone in the marine atmosphere of the British Isles,Atmos. Environ. 21, 2731–2736.

    Google Scholar 

  • Watts, S. F., Brimblecombe, P., and Watson, A. J., 1990, Methanesulfonic acid, dimethyl sulphoxide and dimethyl sulphone in aerosols,Atmos. Environ. 24, 353–356.

    Google Scholar 

  • Winkler, P., 1988, Surface ozone over the Atlantic Ocean,J. Atmos. Chem. 7, 73–91.

    Google Scholar 

  • Yin, F., Grosjean, D., and Seinfeld, J. H., 1990, Photooxidation of dimethyl sulfide and dimethyl disulfide. I: Mechanism development,J. Atmos. Chem. 11, 309–364.

    Google Scholar 

  • Yu, T. W., 1988, A method for determining equivalent depths of the atmospheric boundary layer over the oceans,J. Geophys. Res. 93, 3655–3661.

    Google Scholar 

  • Zafiriou, O. C., Alford, J., Herrera, M., Peltzer, E. T., Gagosian, R. B., and Liu, S. C., 1980, Formaldehyde in remote marine air and rain: Flux measurements and estimates,Geophys. Res. Lett. 7, 341–344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koga, S., Tanaka, H. Numerical study of the oxidation process of dimethylsulfide in the marine atmosphere. J Atmos Chem 17, 201–228 (1993). https://doi.org/10.1007/BF00694398

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694398

Key words

Navigation