Skip to main content
Log in

Purification, characterisation and amino acid composition of the putative moult-inhibiting hormone (MIH) ofCarcinus maenas (Crustacea, Decapoda)

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

Using a Y-organ in vitro assay to measure repression of ecdysteroid synthesis in the presence of putative moult-inhibiting hormone (MIH), in conjunction with HPLC separation of sinus gland neuropeptides ofCarcinus maenas, it was found that both the hyperglycemic hormone (CHH) and a novel peptide (argued to represent the MIH) inhibited ecdysteroid synthesis. The latter was purified to homogeneity, and amino acid analysis showed that it is a 61 residue peptide (minimum molecular mass 7,200 Da) with the following amino acid composition: Asx9; Thr2; Ser2; Glx7; Pro1; Gly4; Ala2; 1/2 Cys4; Val4; Met1; Ile3; Leu5; Tyr1; Phe3; His3; Trp2; Lys2; Arg6. The N-terminus appears to be blocked. MIH is at least 20 times more potent than CHH in repressing ecdysteroid synthesis and is active at concentrations of less than 250 pmol/l. There may be structural similarities between CHH and MIH, howeve, MIH displays no CHH radioimmunoreactivity or hyperglycemic activity. The physiological significance of CHH in controlling ecdysteroid titres is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHH :

hyperglycemic hormone

MIH :

moult inhibiting hormone

PAGE :

polyacrylamide gel electrophoresis

RIA :

radioimmunoassay

SDS :

sodium dodecyl sulfate

SG :

smus gland(s)

SGE :

sinus gland equivalent

TFA :

trifluoroacetic acid

References

  • Aiken DE (1969) Photoperiod, endocrinology and the crustacean molt cycle. Science 164:149–155

    Google Scholar 

  • Bliss DE, Boyer JR (1964) Environmental regulation of growth in the decapod crustaceanGecarcinus lateralis. Gen Comp Endocrinol 4:15–41

    Google Scholar 

  • Borst DW, O'Connor JD (1974) Trace analysis of ecdysones by gas-liquid chromatography, radioimmunoassay and bioassay. Steroids 24:637–657

    Google Scholar 

  • Bruce MJ, Chang ES (1984) Demonstration of a molt-inhibiting hormone from the sinus gland of the lobster (Homarus americanus). Comp Biochem Physiol 79:421–424

    Google Scholar 

  • Chang ES, O'Connor JD (1979) Arthropod molting hormones. In: Jaffee BM, Behrman MR (eds) Methods of hormone radioimmunoassay, 2nd edn. Academic Press, New York, pp 797–814

    Google Scholar 

  • Chang ES, Sage BA, O'Connor JD (1976) The qualitative and quantitative determination of ecdysones in tissues of the crabPachygrapsus crassipes, following molt induction. Gen Comp Endocrinol 30:21–33

    Google Scholar 

  • Chang JY, Brauer D, Wittmann-Liebold B (1978) Micro-sequence analysis of peptides and proteins using 4-NN-dimethylaminoazobenzene-4-isothiocyanate/phenylisothiocyanate double coupling method. FEBS Lett 93:205–214

    Google Scholar 

  • Charniaux-Cotton H (1985) Vitellogenesis and its control in malacostracan Crustacea. Am Zool 25:197–206

    Google Scholar 

  • Frechet P, Roth J, Neville DM (1971) Monoiodoinsulin: Demonstration of its biological activity and binding to fat cells and liver membranes. Biochem Biophys Res Commun 43:400–408

    Google Scholar 

  • Hirs CHW (1967) Performic acid oxidation. Meth Enzymol XI:197–199

    Google Scholar 

  • Jaros PP, Keller R (1981) Improvement and first applications of a radioimmunoassay for an invertebrate hormone, the crustacean hyperglycemic hormone. In: Farner DS, Lederis K (eds) Neurosecretion. Plenum Press, New York London, pp 517–518

    Google Scholar 

  • Jegla TC, Ruland C, Kegel G, Keller R (1983) The role of the Y-organ and cephalic gland in ecdysteroid production and control of molting in the crayfish,Orconectes limosus. J Comp Physiol 152:91–95

    Google Scholar 

  • Keller R (1974) Stoffwechselregulation durch Neurohormone bei Crustaceen. Fortschr Zool 22:34–54

    Google Scholar 

  • Keller R (1977) Comparative electrophoretic studies of crustacean neurosecretory hyperglycemic and melanophore-stimulating hormones from isolated sinus glands. J Comp Physiol 122:359–373

    Google Scholar 

  • Keller R (1981) Purification and amino acid composition of the hyperglycemic neurohormone from the sinus gland ofOrconectes limosus and comparison with the hormone fromCarcinus maenas. J Comp Physiol 141:445–450

    Google Scholar 

  • Keller R, Kegel G (1984) Studies on crustacean eyestalk neuropeptides by the use of high performance liquid chromatography. In: Hoffmann J, Porchet M (eds) Biosynthesis, metabolism and mode of action of invertebrate hormones. Springer, Berlin Heidelberg New York, pp 145–154

    Google Scholar 

  • Keller R, O'Connor JD (1982) Neuroendocrine regulation of ecdysteroid production in the crabPachygrapsus crassipes. Gen Comp Endocrinol 46:384

    Google Scholar 

  • Keller R, Schmid E (1979) In vitro secretion of ecdysteroids by Y-organs and lack of secretion by mandibular organs of the crayfish following molt induction. J Comp Physiol 130:347–353

    Google Scholar 

  • Keller R, Wunderer G (1978) Purification and amino acid composition of the neurosecretory hyperglycemic hormone from the sinus gland of the shore crab,Carcinus maenas. Gen Comp Endocrinol 34:328–335

    Google Scholar 

  • Keller R, Jaros PP, Kegel G (1985) Crustacean hyperglycemic neuropeptides. Am Zool 25:207–221

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Mattson MP, Spaziani E (1985a) Characterisation of molt-inhibiting hormone (MIH) action on crustacean Y-organ segments and dispersed cells in culture and a bioassay for MIH activity. J Exp Zool 236:93–101

    Google Scholar 

  • Mattson MP, Spaziani E (1985b) Functional relations of crab molt-inhibiting hormone and neurohypophysial peptides. Peptides 6:635–640

    Google Scholar 

  • Mattson MP, Spaziani E (1985c) 5-hydroxytryptamine mediates release of molt-inhibiting hormone activity from isolated crab eyestalk ganglia. Biol Bull 169:246–255

    Google Scholar 

  • Mattson MP, Spaziani E (1985d) Stress reduced hemolymph ecdysteroid levels in the crab: Mediation by the eyestalks. J Exp Zool 234:319–323

    Google Scholar 

  • Newcomb RW (1983) Peptides in the sinus gland ofCardisoma carnifex: Isolation and amino acid analysis. J Comp Physiol 153:207–221

    Google Scholar 

  • Newcomb RW, Stuenkel EL, Cooke IM (1985) Characterisation, biosynthesis and release of neuropeptides from the X-organ-sinus gland system of the crabCardisoma carnifex. Am Zool 25:157–171

    Google Scholar 

  • Orth HP (1985) Untersuchungen zur Physiologie des Hyperglykämischen Hormons der Crustacea (CHH) beiCarcinus maenas (L). Diplomarbeit, Universität Bonn

  • Passano LM (1953) Neurosecretory control of molting in crabs by the X-organ sinus gland complex. Physiol Comp Oecol 3:155–189

    Google Scholar 

  • Passano LM (1960) Molting and its control. In: Waterman TH (ed) The physiology of Crustacea, Vol 1. Academic Press, New York, pp 473–536

    Google Scholar 

  • Simpson RJ, Neuberger MR, Liu T-Y (1976) Complete amino acid analysis of proteins from a single hydrolysate. J Biol Chem 251:1936–1940

    Google Scholar 

  • Skinner DM (1985a) Molting and regeneration. In: Bliss DE, Mantel LH (eds) The biology of Crustacea, vol 9. Academic Press, New York, pp 43–146

    Google Scholar 

  • Skinner DM (1985b) Interacting factors in the control of the crustacean molt cycle. Am Zool 25:275–284

    Google Scholar 

  • Sochasky JB (1973) Failure to accelerate molting following eyestalk ablation in decapod crustaceans: A review of the literature. Fish Res Bd Can Techn Rep 431:1–127

    Google Scholar 

  • Soumoff C, O'Connor JD (1982) Repression of Y-organ secretory activity by molt-inhibiting hormone in the crabPachygrapsus crassipes. Gen Comp Endocrinol 48:432–439

    Google Scholar 

  • Spindler-Barth M (1976) Changes in the chemical composition of the common shore crab,Carcinus maenas, during the molting cycle. J Comp Physiol 105:197–205

    Google Scholar 

  • Van Deijnen JE (1986) Structural and biochemical investigations into the neuro-endocrine system of the optic ganglia of decapod Crustacea. Proefschrift, Katholieke Universiteit Nijmegen, pp 1–201

  • Webster SG (1986) Neurohormonal control of ecdysteroid biosynthesis byCarcinus maenas Y-organs in vitro, and preliminary characterisation of the putative molt-inhibiting hormone (MIH). Gen Comp Endocrinol 61:237–247

    Google Scholar 

  • Wray W, Boulikas T, Wray VP, Hancock R (1981) Silver staining of proteins in polyacrylamide gels. Anal biochem 118:197–203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webster, S.G., Keller, R. Purification, characterisation and amino acid composition of the putative moult-inhibiting hormone (MIH) ofCarcinus maenas (Crustacea, Decapoda). J Comp Physiol B 156, 617–624 (1986). https://doi.org/10.1007/BF00692738

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692738

Keywords

Navigation