Skip to main content
Log in

Dynamics of Mars-orbiting dust: Effects of light pressure and planetary oblateness

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper deals with dynamics of impact ejecta from Phobos and Deimos initially on near-circular equatorial orbits around Mars. For particles emitted in a wide size regime of ∼1 micron and greater, and taking into account the typical particle lifetimes to be less than ∼100 years, the motion is governed by two perturbing forces: solar radiation pressure and influence of Mars' oblateness. The equations of motion of particles in Lagrangian non-singular elements are deduced and solved, both analytically and numerically, for different-sized ejecta. We state that the coupled effect of both forces above is essential so that on no account can the oblateness of Mars are be neglected. The dynamics of grains prove to be quite different for the ejecta of Phobos and Deimos. For Deimos, the qualitative results are relatively simple and imply oscillations of eccentricity and long-term variations of orbital inclination, with amplitudes and periods both depending on grain size. For Phobos, the dynamics are shown to be much more complicated, and we discuss it in detail. We have found an intriguous peculiar behavior of debris near 300 µm in size. Another finding is that almost all the Phobos ejecta with radii less than ≈30 µm (against the values of 5 to 20 µm adopted earlier by many authors) should be rapidly lost by collisions with martian surface. The results of the paper may be the base for constructing an improved model of dust belts that presumably exist around Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop, J. and Chamberlain, J.W.: 1989, ‘Radiation Pressure Dynamics in Planetary Exospheres — A ‘Natural’ Framework’,Icarus 81, 145–163.

    Google Scholar 

  • Brouwer, D. and Clemence, G.: 1961,Methods of Celestial Mechanics, Academic Press, New York.

    Google Scholar 

  • Burns, J.A., Lamy, P.L. and Soter, S.: 1979, ‘Radiation Forces on Small Particles in the Solar System’,Icarus 40, 1–48.

    Google Scholar 

  • Burns, J.A., Showalter, M.R. and Morfill, G.E.: 1984, ‘The Ethereal Rings of Jupiter and Saturn’, inPlanetary Rings (R. Greenberg, A. Brahic, Eds.), Univ. of Arizona Press, Tuscon, pp. 200–272.

    Google Scholar 

  • Canup, R.M., Colwell, J.E. and Horányi, M.: 1993, ‘Size Distribution of Satellite Dust Ejecta: Effects of Radiation Pressure and Planetary Oblateness’,Icarus 105, 363–369.

    Google Scholar 

  • Chamberlain, J.W.: 1979, ‘Depletion of Satellite Atoms in a Collisionless Exosphere by Radiation Pressure’,Icarus 39, 286–294.

    Google Scholar 

  • Chamberlain, J.W.: 1980, ‘Exospheric Perturbations by Radiation Pressure, 2: Solution for Orbits in the Ecliptic Plane’,Icarus 44, 651–656.

    Google Scholar 

  • Chamberlain, J.W. and Bishop, J.: 1993, ‘Radiation Pressure Dynamics in Planetary Exospheres, 2: Closed Solution for the Evolution of Orbital Elements’,Icarus 106, 419–427.

    Google Scholar 

  • Chamberlain, J.W., Alexander, W.M., and Corbin, J.D.: 1980, ‘Orbits of Submicron Lunar Ejecta in the Earth-Moon System’, inSolid Particles in the Solar System, Reidel, Dordrecht, pp. 421–424.

    Google Scholar 

  • Colwell, J.E.: 1989, ‘The Origin and Evolution of the Uranian Dust Rings’,Ph.D. thesis, Colorado Univ., Boulder.

    Google Scholar 

  • Colwell, J.E. and Esposito, L.W.: 1990, ‘A Numerical Model of the Uranian Dust Rings’,Icarus 86, 530–560.

    Google Scholar 

  • Danby, J.M.A.: 1988,Fundamentals of Celestial Mechanics (2nd edn.), Willmann-Bell, Richmond VA.

    Google Scholar 

  • Emelyanov, N.V., Vashkovyak, S.N. and Nasonova, L.P.: 1993, ‘The Dynamics of Martian Satellites from Observations’,Astron. Astrophys.,267, 634–642.

    Google Scholar 

  • Euler, L.: 1753,Theoria motus Lunae exhibens omnes ejus inaequalitates etc., Impensis Academiae Imperialis Scientiarum Petropolitanae.

  • Grün, E., Morfill, G., Schwehm, G. and Johnson, T. V.: 1980, ‘A Model of the Origin of the Jovian Ring’,Icarus 44, 326–338.

    Google Scholar 

  • Hamilton, D.P.: 1993, ‘Motion of Dust in a Planetary Magnetosphere — Orbit-Averaged Equations for Oblateness, Electromagnetic, and Radiation Forces with Application to Saturn's E ring’,Icarus 101, 244–264.

    Google Scholar 

  • Horányi, M. and Burns, J.A.: 1991, ‘Charged Dust Dynamics — Orbital Resonance Due to Planetary Shadows’,J. Geophys. Res. 96, 19283–19289.

    Google Scholar 

  • Horányi, M., Burns, J.A., Tátrallyay, M. and Luhmann, J.G.: 1990, ‘Toward Understanding the Fate of Dust Lost from the Martian Satellites’,Geophys. Res. Lett. 17, 853–856.

    Google Scholar 

  • Horányi, M., Tátrallyay, M., Juhász, A. and Luhmann, J.G.: 1991, ‘The Dynamics of Submicron-Sized Dust Particles Lost from Phobos’,J. Geophys. Res. 96, 11283–11290.

    Google Scholar 

  • Horányi, M., Burns, J.A. and Hamilton, D.P.: 1992, ‘The Dynamics of Saturn's E Ring Particles’,Icarus 97, 248–259.

    Google Scholar 

  • van de Hulst, H.C.: 1957,Light Scattering by Small Particles, Wiley, New York.

    Google Scholar 

  • Ishimoto, H. and Mukai, T.: 1992, ‘Dynamics of Small Particles Ejected from Phobos’, inProc. XXVth Symp. on Celestial Mechanics (H. Kinoshita, H. Nakai, Eds.), Tokyo, pp. 39–43.

  • Juhász, A. and Horányi, M.: 1995, ‘Dust Torus Around Mars’,J. Geophys. Res. 100, 3277–3284.

    Google Scholar 

  • Juhász, A., Tátrallyay, M., Gévai, G. and Horányi, M.: 1993, ‘On the Density of the Dust Halo Around Mars’,J. Geophys. Res. 98, 1205–1211.

    Google Scholar 

  • Kapišinsky, I.: 1983. ‘Nongravitational Effects Affecting Small Meteoroids in Interplanetary Space’,Pro. Astron. Observ. Scalnaton Pleso 12, 99–111.

    Google Scholar 

  • Kholshevnikov, K.V., Krivov, A.V., Sokolov, L.L., and Titov, V.B., 1993, ‘The Dust Torus Around Phobos Orbit’,Icarus 105, 351–362.

    Google Scholar 

  • Kozai, Y.: 1961, ‘Effects of Solar Radiation Pressure on the Motion of an Artificial Satellite’,Smithsonian Astrophys. Obs. Spec. Rept. No. 56.

  • Krivov, A.V.: 1994, ‘On the Dust Belts of Mars’,Astron. Astrophys. 291, 657–663.

    Google Scholar 

  • Martin, P.G.: 1978,Cosmic Dust. Oxford Univ. Press.

  • Mignard, F.: 1982a, ‘Radiation Pressure and Dust Particles Dynamics’,Icarus 49, 347–366.

    Google Scholar 

  • Mignard, F.: 1982b, ‘Dynamics of Neutral Small Particles’, inCNES Planetary Rings 513–534.

  • Mignard, F.: 1984, ‘Effects of Radiation Forces on Dust Particles in Planetary Rings’, inPlanetary Rings (R. Greenberg, A. Brahic, Eds.), Univ. of Arizona Press, Tuscon, pp. 333–366.

    Google Scholar 

  • Mignard, F. and Hénon, M.: 1984, ‘About an Unsuspected Integrable Problem’,Celest. Mech. 33, 239–250.

    Google Scholar 

  • Musen, P.: 1960, ‘The Influence of the Solar Radiation Pressure on the Motion of an Artificial Satellite’,J. Geophys. Res. 65, 1391.

    Google Scholar 

  • Peale, S.J.: 1966, ‘Dust Belt of the Earth’,J. Geophys. Res. 71, 911–933.

    Google Scholar 

  • Poincaré, H.: 1899,Les Méthodes Nouvelles de la Mécanique Céleste, Vol. 3, Gauthier-Villars, Paris.

    Google Scholar 

  • Polyakhova, E.N.: 1963, ‘Radiation Pressure and Motion of the Earth Satellites’,Bull. ITA 9, 15–45 (in Russian).

    Google Scholar 

  • Polyakhova, E.N.: 1969, ‘Influence of Radiation Pressure on the Motion of Artificial Celestial Bodies’,Ph.D. thesis, Leningrad State University, Leningrad (in Russian).

    Google Scholar 

  • Polyakhova, E.N.: 1970, ‘Long-Periodic Perturbations of Artificial Earth Satellites under the Solar Radiation Pressure’,Vestnik Leningradskogo Universiteta, No. 7, 144–152 (in Russian).

  • Polyakhova, E.N.: 1971, ‘Evolution of Orbits of Light Artificial Satellites Perturbed by Solar Radiation Pressure and the Earth Oblateness’,Vestnik Leningradskogo Universiteta, No. 13, 159–165 (in Russian).

    Google Scholar 

  • Polyakhova, E.N.: 1972, ‘Influence of Shadow Effects on the Motion of Artificial Earth Satellites’,Vestnik Leningradskogo Universiteta, No. 1, 138–144 (in Russian).

  • Radzievsky, V.V. and Artem'ev, A.V.: 1962, ‘The Influence of Solar Radiation Pressure on the Motion of Artificial Earth Satellites’,Sov. Astron. 5, 758–759.

    Google Scholar 

  • Shaniro, I.I.: 1963, ‘The Prediction of Satellites Orbits’, inDynamics of Satellites (M. Roy, Ed.), Academic Press, New York, pp. 257–312.

    Google Scholar 

  • Soter, S.: 1971, ‘The Dust Belts of Mars’,Rept. of Center for Radiophysics and Space Res. No. 462, Cornell Univ., Ithaca.

    Google Scholar 

  • Tátrallyay, M., Horányi, M., Juhász, A. and Luhmann, J.G.: 1992, ‘Submicron-Sized Dust Grains in the Martian Environment’,Advances in Space Research 12, 27–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivov, A.V., Sokolov, L.L. & Dikarev, V.V. Dynamics of Mars-orbiting dust: Effects of light pressure and planetary oblateness. Celestial Mech Dyn Astr 63, 313–339 (1995). https://doi.org/10.1007/BF00692293

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692293

Key words

Navigation