Skip to main content
Log in

Mussel glue fromMytilus californianus Conrad: a comparative study

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

Marine mussels secrete a byssus in order to attach to solid surfaces in the sea. The polyphenolic protein is the “glue” in the adhesive plaques of the byssus. InMytilus californianus, the polyphenolic protein has an apparent molecular weight of 85,000±5,000 and is rich in the amino acids lysine, 3,4-dihydroxyphenylalanine, serine, threonine, and hydroxyproline. In composition it resembles the polyphenolic protein ofM. edulis (M r=125,000), although theM. edulis protein contains significantly less isoleucine and more alanine. Tryptic digestion ofM. californianus polyphenolic protein revealed two types of repeating decapeptides (1) (Ser/Thr)-Thr-(Tyr/Dopa)-Hyp-Hyp-Thr-Dopa-Lys-Hyp-Lys and (2) Ile-(Thr/Ser)-(Tyr/Dopa)-Hyp-Hyp-Thr-Dopa-Lys-Hyp-Lys. Residues 2 to 8 are identical with residues 4–10 inM. edulis decapeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Dopa :

3,4⧀hydroxyphenylalanine

References

  • Allan JA, Cook M, Jackson DJ, Preston S, Worth EM (1976) Observations on the rate of production and mechanical properties of the byssus threads ofMytilus edulis L. J Moll Stud 42:279–298

    Google Scholar 

  • Avdeef A, Sofen SR, Bregante TL, Raymond KN (1978) Coordination chemistry of microbial iron transport compounds. J Am Chem Soc 100:5367–5370

    Google Scholar 

  • Grayson M (1983) Encyclopaedia of composite materials and components. Wiley & Sons, New York, pp 530–574

    Google Scholar 

  • Harger JRE (1970a) The effects of species composition on the survival of mixed populations of the sea musselsM. californianus andM. edulis. Veliger 13:417–152

    Google Scholar 

  • Harger JRE (1970b) The effect of wave impact on some aspects of the biology of sea mussels. Veliger 12:401–414

    Google Scholar 

  • Jones NR (1977) Uses of gelatin in edible products. In: Ward AG, Courts A (eds) The science and technology of gelatin. Academic Press, London, pp 365–394

    Google Scholar 

  • Kummert R, Stumm W (1980) The surface complexation of organic acids on hydrous γ-Al2O3. J Coll Interf Sci 75:373–383

    Google Scholar 

  • Martell AE (1971) Stability constants of metal-ion complexes. Supplement No. 1 Part II, Special Publication No. 25 The Chemical Society, London

    Google Scholar 

  • Martin RB (1984) Porosity and specific surface of bone. CRC Crit Rev Biomed Eng 10:179–222

    Google Scholar 

  • Nozaki Y, Tanford C (1971) The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. J Biol Chem 246:2211–2217

    Google Scholar 

  • Ozols J, Gerard C, Nobrega FG (1976) Proteolytic cleavage of horse liver cytochrome b5. J Biol Chem 251:6767–6774

    Google Scholar 

  • Ozols J, Heinemann FS (1982) Chemical structure of rat liver cytochrome b5. Isolation of peptides by high pressure liquid chromatography. Biochim Biophys Acta 704:163–173

    Google Scholar 

  • Panyim S, Chalkley R (1969) High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys 130:337–346

    Google Scholar 

  • Pujol JP (1967) Le complex byssogène des mollusques bivalves. Bull Soc Linné Norm 8:308–332

    Google Scholar 

  • Schroeder WA (1968) The primary structure of proteins. Harper & Row Publishers, New York

    Google Scholar 

  • Sheehan JC, Mania DC, Nakamura S, Stock JA, Maeda K (1968) The structure of Telomycin. J Am Chem Soc 90:462–470

    Google Scholar 

  • Tamarin A, Lewis P, Askey J (1974) Specialized cilia of the byssus attachment plaque forming region inMytilus californianus. J Morphol 142:321–328

    Google Scholar 

  • Tamarin A, Lewis P, Askey J (1976) The structure and formation of the byssal plaque forming region inM. californianus. J Morphol 149:199–222

    Google Scholar 

  • Waite JH (1985) Catechol oxidase in the byssus of the common mussel,Mytilus edulis. J Mar Biol Assoc UK 65:359–371

    Google Scholar 

  • Waite JH (1984) Determination of (catecholato)-borate complexes using difference spectrophotometry. Anal Chem 56:1935–1939

    Google Scholar 

  • Waite JH (1983a) Evidence for a repeating Dopa and hydroxyproline containing decapeptide in the adhesive protein ofMytilus edulis. J Biol chem 258:2911–2915

    Google Scholar 

  • Waite JH (1983b) Quinone-tanned scleroproteins. In: Hochachka P (ed) The Mollusca — metabolic biochemistry and molecular biomechanics, vol I. Academic Press, New York, pp 467–504

    Google Scholar 

  • Waite JH, Benedict CV (1984) Assay of dihydroxyphenylalanine in invertebrate structural proteins. Meth Enzymol 107:397–413

    Google Scholar 

  • Waite JH, Housley TJ, Tanzer ML (1985) Peptide repeats in a mussel glue: Theme and variations. Biochemistry 24:5010–5015

    Google Scholar 

  • Waite JH, Tanzer ML (1981) Polyphenolic substance ofMytilus edulis. Science 212:1038–1040

    Google Scholar 

  • Wistuba E (1980) Kleben und Klebstoffe. Chemie in unserer Zeit 14:124–133

    Google Scholar 

  • Witman JD, Suchanek TH (1984) Mussels in flow: drag and dislodgement by epizoans. Mar Ecol Prog Ser 16:259–268

    Google Scholar 

  • Yamamoto H, Hayakawa T (1982) Synthesis of sequential polypeptides containingl-3,3-dihydroxyphenylalanine andl-glutamic acid. Biopolymers 18:3067–3076

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waite, J.H. Mussel glue fromMytilus californianus Conrad: a comparative study. J Comp Physiol B 156, 491–496 (1986). https://doi.org/10.1007/BF00691034

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691034

Keywords

Navigation