Skip to main content
Log in

The evolutionary ecology of respiratory mode in fishes: an analysis based on the costs of breathing

  • Papers from a symposium on the Evolutionary Ecology of Neotropical Freshwater Fishes
  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Fishes use unimodal water breathing, unimodal air breathing, and a wide range of bimodal combinations of water and air breathing to obtain oxygen. This essay seeks to provide a theoretical framework in which to understand this diversity of respiratory mode. Consideration of oxygen as a resource shows that it is scarce in relation to demand and that an inadequate supply limits activity, growth, reproduction, and ultimately, survival. Thus, there should be strong selective pressure to maximize the efficiency of oxygen uptake. Both water breathing and air breathing require ventilation, circulation, locomotion, and respiratory structures. Each of these components has energy costs and may also be subject to costs in time, materials, or risk of predation. Consideration of these costs reveals that dissolved oxygen concentration and distance from the surface are key environmental determinants. Predation pressure and several morphological and behavioral characteristics may also have an influence. These factors are integrated into a general theory of breathing costs which permits prediction of patterns in respiratory partitioning, habitat selection, the frequency of occurrence of respiratory modes in different habitats and correlations within habitats between behavioral and morphological characteristics and respiratory mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Arunachalam, S., E. Vivekanandan & T.J. Pandian. 1976. Food intake, conversion and swimming activity in the air-breathing catfishHeterop.neustes fossihs. Hydrobiologia 51: 213–217.

    Article  Google Scholar 

  • Balon, E.K. 1977. Early ontogeny ofLabeotropheus Ahl, 1927 (Mbuna, Cichlidae, Lake Malawi), with a discussion on advanced protective styles in fish reproduction and development. Env. Biol. Fish. 2: 147–176.

    Article  Google Scholar 

  • Berg, J. & J.B. Steen. 1965. Physiological mechanism for aerial respiration in the eel. Comp. Biochem. Physiol. 15: 469–484.

    Article  CAS  PubMed  Google Scholar 

  • Bergstand, E. & A.J. Cordone. 1971. Exploratory bottom trawling in Lake Victoria. Aft. J. Trop. Hydrobiol. Fish. 1: 13–23.

    Google Scholar 

  • Blažka, P. 1958. The anaerobic metabolism of fish. Physiol. Zool. 31: 117–128.

    Google Scholar 

  • Branson, B.A. & P. Hake. 1972. Observations on an accessory breathing mechanism inPiaractus nigripinnis (Cope) (Pisces: Teleostomi: Characidae). Zool. Anz. 189: 292–297.

    Google Scholar 

  • Brett, J.R. 1965. The relation of size to rate of oxygen consumption and sustained swimming speed of sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Board Can. 22: 1491–1501.

    Google Scholar 

  • Brett, J.R. 1979. Environmental factors and growth. pp. 599–675. In: W.S. Hoar, D.J. Randall & J.R. Brett (ed.) Fish Physiology, Vol. 8, Academic Press, New York.

    Google Scholar 

  • Brett, J.R. & T.D.D. Groves. 1979. Physiological energetics. pp. 279–352. In: W.S. Hoar, D.J. Randall & J.R. Brett (ed.) Fish Physiology, Vol. 8, Academic Press, New York.

    Google Scholar 

  • Brockmann, F.W. 1975. An unusual habitat for the fish Rimlus marmoratus. Florida Sci. 38: 35–36.

    Google Scholar 

  • Brown, C.E. & B.S. Muir. 1970. Analysis of ram ventilation of fish gills with application to skipjack tuna (Katsuwonus pelamis). J. Fish. Res. Board Can. 27: 1637–1652.

    Google Scholar 

  • Burggren, W.W. 1982. ‘Air gulping’ improves blood oxygen transport during aquatic hypoxia in the goldfish,Carassius auratus. Physiol. Zool. 55: 327–334.

    Google Scholar 

  • Carter, G.S. 1934. Results of the Cambridge expedition to British Guiana, 1933. The fresh waters of the rain-forest areas of British Guiana. J. Linn. Soc. Lond. (Zool.) 39: 147–193.

    Article  Google Scholar 

  • Carter, G.S. 1957. Air breathing. pp. 65–79.In: M.E. Brown (ed.) Physiology of Fishes, Vol. 1, Academic Press, London.

    Google Scholar 

  • Carter, G.S. & L.C. Beadle. 1931. The fauna of the swamps of the Paraguayan chaco in relation to its environment — II. Respiratory adaptations in the fishes. J. Linn. Soc. Lond. (Zool.) 37: 327–368.

    Article  Google Scholar 

  • Coulter, G.W. 1967. Low apparent oxygen requirements of deep-water fishes in Lake Tanganyika. Nature, Lond. 215: 317–318.

    Article  CAS  Google Scholar 

  • Congleton, J.L. 1974. The respiratory response to asphyxia ofTyphlogobius californiensis (Teleostei: Gobiidae) and some related gobies. Biol. Bull. 146: 186–205.

    Article  CAS  PubMed  Google Scholar 

  • Davis, J.C. 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J. Fish. Res. Board Can. 32: 2295–2332.

    Google Scholar 

  • Dehadrai, P.V. & S.D. Tripathi. 1976. Environment and ecology of freshwater air-breathing teleosts. pp. 39–72.In: G.M. Hughes (ed.) Respiration of Amphibious Vertebrates, Academic Press, London.

    Google Scholar 

  • Dejours, P. 1976. Water versus air as the respiratory media. pp. 1–15.In: G.M. Hughes (ed.) Respiration of Amphibious Vertebrates, Academic Press, London.

    Google Scholar 

  • Doudoroff, P. & D.L. Shumway. 1970. Dissolved oxygen requirements of freshwater fishes. Food and Agricultural Organization of the United Nations Technical Paper 86. 291 pp.

  • Dunstone, N. & R.J. O'Connor. 1979. Optimal foraging in an amphibious mammal. I. The aqualung effect. Anim. Behav. 27: 1182–1194.

    Article  Google Scholar 

  • Freadman, M.A. 1981. Swimming energetics of striped bass (Morone saxatilis) and bluefish (Pontatomus saltatrix): hydrodynamic correlates of locomotion and gill ventilation. J. Exp. Biol. 90: 253–265.

    Google Scholar 

  • Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. pp. 1–98. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 6, Academic Press, New York.

    Google Scholar 

  • Gans, C. 1970a. Respiration in early tetrapods — the frog is a red herring. Evolution 24: 723–734.

    Article  Google Scholar 

  • Gans, C. 1970b. Strategy and sequence in the evolution of the external gas exchangers of ecothermal vertebrates. Forma et Functio 3: 61–104.

    Google Scholar 

  • Gee, J.H. 1981. Coordination of respiratory and hydrostatic function of the swimbladder in the central mudminnow,Umbra limi. J. Exp. Biol. 92: 37–52.

    Google Scholar 

  • Gee, J.H. & J.B. Graham. 1978. Respiratory and hydrostatic functions of the intestine of the catfishesHoplosternton thorucatutn andBrochis splendens (Callichthyidae). J. Exp. Biol. 74: 1–16.

    CAS  PubMed  Google Scholar 

  • Gee J.H., R.F. Tallman & H.J. Smart 1978. Reactions of some great plains fishes to progressive hypoxia. Can. J. Zool. 56: 1962–1966.

    Article  Google Scholar 

  • Gould, S.J. & R.C. Lewontin. 1979. The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proc. Royal Soc. Lond., Ser. B.205: 580–599.

    Google Scholar 

  • Gradwell, N. 1971. A photographic analysis of the air breathing behavior of the catfish,Plecostontus punctatus. Can. J. Zool. 49: 1089–1094.

    CAS  PubMed  Google Scholar 

  • Graham, J.B. 1976. Respiratory adaptations of marine airbreathing fishes, pp. 165–187.In: G.M. Hughes (ed.) Respiratory Adaptations of Amphibious Vertebrates, Academic Press, London.

    Google Scholar 

  • Graham, J.B., D.L. Kramer & E. Pineda. 1978. Comparative respiration of an air-breathing and a non-air-breathing characoid fish and the evolution of aerial respiration in characins. Physiol. Zool. 51: 279–288.

    Google Scholar 

  • Halliday, T.R. & H.P.A. Sweatman. 1976. To breathe or not to breathe: the newt's problem. Anim. Behav. 24: 551–561.

    Article  Google Scholar 

  • Hochachka, P.W. 1982. Anaerobic metabolism: living without oxygen. pp. 138–150.In: C.R. Taylor, K. Johansen & L. Bolis (ed.) A Companion to Animal Physiology, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Hochachka, P.W. & G.N. Somero. 1976. Enzyme and metabolic adaptations to low oxygen. pp. 279–314.In: R.C. Newell (ed.) Adaptation to Environment: Essays on the Physiology of Marine Animals, Butterworths, London.

    Google Scholar 

  • Holeton, G.F. 1980. Oxygen as an environmental factor of fishes. pp. 7–32. In: M.A. Ali (ed.) Environmental Physiology of Fishes, Plenum, New York.

    Google Scholar 

  • Hora, S.L. 1935. Physiology, bionomics and evolution of airbreathing fishes of India. Trans. Nat. Inst. Sci. India 1: 1–16.

    Google Scholar 

  • Hughes, G.M. 1963. Comparative physiology of vertebrate respiration. Heinemann Educational Books, London. 145 pp.

    Google Scholar 

  • Hughes, G.M. & G. Shelton. 1962. Respiratory mechanisms and their nervous control in fish. pp. 275–364. In: O. Lowenstein (ed.) Advances in Comparative Physiology and Biochemistry, Vol. 1, Academic Press, London.

    Google Scholar 

  • Johansen, K. 1970. Air breathing in fishes. pp. 361–411.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 4, Academic Press, New York.

    Google Scholar 

  • Johansen, K. & W.W. Burggren. 1980. Cardiovascular function in the lower vertebrates. pp. 61–117.In: G.H. Bourne (ed.) Hearts and Heart-Like Organs, Vol. 1. Academic Press, New York.

    Google Scholar 

  • Jones, D.R. 1971. Theoretical analysis of factors which may limit the maximum oxygen uptake of fish: the oxygen cost of the cardiac and branchial pumps. J. Theor. Biol. 32: 341–349.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D.R. & T. Schwarzfeld. 1974. The oxygen cost to the metabolism and efficiency of breathing in trout (Salmo gairdneri). Respir. Physiol. 21: 241–254.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, J. 1976. The influence of body weight on gas exchange in the air-breathing fish,Clurias hatruchus. Comp. Biochem. Physiol. 53A: 305–310.

    Article  Google Scholar 

  • Kinney, J.L. & F.N. White. 1977. Oxidative cost of ventilation in a turtlePseudemys floridana. Resp. Physiol. 31: 327–332.

    Article  CAS  Google Scholar 

  • Kirsch, R. & G. Nonnotte. 1977. Cutaneous respiration in three freshwater teleosts. Respir. Physiol. 29: 339–354.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, D.L. 1983. Aquatic surface respiration in the fishes of Panama: distribution in relation to risk of hypoxia. Env. Biol. Fish. 8: 49–54.

    Article  Google Scholar 

  • Kramer, D.L. & J.B. Graham. 1976. Synchronous air breathing, a social component of respiration in fishes. Copeia 1976: 689–697.

    Article  Google Scholar 

  • Kramer, D.L., C.C. Lindsey, G.E.E. Moodie & E.D. Stevens. 1978. The fishes and the aquatic environment of the central Amazon basin, with particular reference to respiratory patterns. Can. J. Zool. 56: 717–729.

    Article  Google Scholar 

  • Kramer, D.L., D. Manley & R. Bourgeois. 1983. The effect of respiratory mode and oxygen concentration on the risk of aerial predation in fishes. Can. J. Zool. 61: 653–665.

    Article  Google Scholar 

  • Kramer, D.L. & M. McClure. 1980. Aerial respiration in the catfish,Corydoras aenneus (Callichthyidae). Can. J. Zool. 58: 1984–1991.

    Article  Google Scholar 

  • Kramer, D.L. & M. McClure. 1981. The transit cost of aerial respiration in the catfishCorydoras aeneus (Callichthyidae). Physiol. Zool. 54: 189–194.

    Google Scholar 

  • Kramer, D.L. & M. McClure. 1982. Aquatic surface respiration, a widespread adaptation to hypoxia in tropical freshwater fishes. Env. Biol. Fish. 7: 47–55.

    Article  Google Scholar 

  • Kramer, D.L. & J.P. Mehegan. 1981. Aquatic surface respiration, an adaptive response to hypoxia in the guppy,Poecilia reticulata (Pisces, Poeciliidae). Env. Biol. Fish. 6: 299–313.

    Article  Google Scholar 

  • Krebs, J.R. & N.B. Davies. 1981. An introduction to behavioural ecology. Sinauer Associates, Sunderland. 292 pp.

    Google Scholar 

  • Kudhongania, A.W. & A.J. Cordone. 1974. Batho-spatial distribution patterns and biomass estimate of the major demersal fishes in Lake Victoria. Afr. J. Trop. Hydrobiol. Fish. 3: 15–31.

    Google Scholar 

  • Lewis, W.M., Jr. 1970. Morphological adaptations of cyprinodontoids for inhabiting oxygen deficient waters. Copeia 1970: 319–326.

    Article  Google Scholar 

  • Liem, K.F. 1980. Air ventilation in advanced teleosts: biomechanical and evolutionary aspects. pp. 57–91. In: M.A. Ali (ed.) Environmental Physiology of Fishes, Plenum, New York.

    Google Scholar 

  • Liem, K.F. 1981. Larvae of air-breathing fishes as countercurrent flow devices in hypoxic environments. Science 211: 1177–1179.

    Article  CAS  PubMed  Google Scholar 

  • Mathur, G.B. 1967. Anaerobic respiration in a cyprinoid fishRasbora daniconius (Ham.). Nature, Lond. 214: 318–319.

    Article  Google Scholar 

  • Packard, G.C. 1974. The evolution of air-breathing in paleozoic gnathostome fishes. Evolution 28: 320–325.

    Article  Google Scholar 

  • Pandian, T.J. & E. Vivekanandan. 1976. Effects of feeding and starvation on growth and swimming activity in an obligatory air-breathing fish. Hydrobiologia 49: 33–39.

    Google Scholar 

  • Pennak, R.W. 1971. Towards a classification of lotic habitats. Hydrobiologia 38: 321–334.

    Article  Google Scholar 

  • Rahn, H. & B.J. Howell. 1976. Bimodal gas exchange. pp. 271–285.In: G.M. Hughes (ed.) Respiration of Amphibious Vertebrates, Academic Press, London.

    Google Scholar 

  • Randall, D.J. 1970. Gas exchange in fish. pp. 253–292.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 4, Academic Press, New York.

    Google Scholar 

  • Randall, D.J., W.W. Burggren, A.P. Farrell & M.S. Haswell. 1981. The evolution of air breathing in vertebrates. Cambridge Univ. Press, Cambridge. 133 pp.

    Google Scholar 

  • Roberts, J.L. 1975. Respiratory adaptations of aquatic animals. pp. 395–414.In: F.J. Vernberg (ed.) Physiological Adaptation to the Environment, Intext Educational, New York.

    Google Scholar 

  • Saxena, D.B. 1963. A review on ecological studies and their importance in the physiology of air-breathing fishes. Ichthyologica 2: 116–128.

    Google Scholar 

  • Schmidt-Nielsen, K. 1979. Animal physiology: adaptation and environment. 2nd ed, Cambridge Univ. Press, Cambridge. 560 PP.

    Google Scholar 

  • Shelton, G. 1970. The regulation of breathing. pp. 293–359. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 4, Academic Press, New York.

    Google Scholar 

  • Shoubridge, E.A. & P.W. Hochachka. 1981. The origin and significance of metabolic carbon dioxide production in the anoxic goldfish. Mol. Physiol. 1: 315–338.

    CAS  Google Scholar 

  • Singh, B.N. 1976. Balance between aquatic and aerial respiration. pp. 125–164.In: G.M. Hughes (ed.) Respiration of Amphibious Vertebrates, Academic Press, London.

    Google Scholar 

  • Smatresk, N.J. & J.N. Cameron. 1982. Respiration and acidbase physiology of the spotted gar, a bimodal breather. 1. Normal values and the response to severe hypoxia. J. Exp. Biol. 96: 263–280.

    Google Scholar 

  • Smith, H.W. 1931. Observations on the African lungfishProtopterus aethiopicus, and on evolution from water to land environment. Ecology 12: 164–181.

    Article  Google Scholar 

  • Talling, J.F. 1969. The incidence of vertical mixing, and some biological and chemical consequences in tropical African lakes. Verb. Internat. Verein. Limnol. 17: 998–1012.

    Google Scholar 

  • Todd, E.S. 1973. Positive buoyancy and air-breathing: a new piscine gas bladder function. Copeia 1973: 461–464.

    Article  Google Scholar 

  • Ultsch, G.R. 1976. Eco-physiological studies of some metabolic and respiratory adaptations of sirenid salamanders. pp. 287–312. In: G.M. Hughes (ed.) Respiration of Amphibious Vertebrates, Academic Press, London.

    Google Scholar 

  • Ultsch, G.R. & D.C. Jackson. 1982. Long-term submergence at 3°C of the turtle,Chyrsemys picta belli, in normoxic and severely hypoxic water. 1. Survival, gas exchange and acidbase status. J. Exp. Biol. 96: 11–28.

    Google Scholar 

  • Van den Thillart, G. & F. Kesbeke. 1978. Anaerobic production of carbon dioxide and ammonia by goldfishCarassius auratus (L.). Comp. Biochem. Physiol. 59A: 393–400.

    Google Scholar 

  • West, N.H. & D.R. Jones. 1975. Breathing movements in the frogRana pipiens. II. The power output and efficiency of breathing. Can. J. Zool. 53: 345–353.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, D.L. The evolutionary ecology of respiratory mode in fishes: an analysis based on the costs of breathing. Environ Biol Fish 9, 145–158 (1983). https://doi.org/10.1007/BF00690859

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690859

Keywords

Navigation