Skip to main content
Log in

Phosphoenolpyruvate synthetase inMethanobacterium thermoautotrophicum

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The thermophilic autotrophMethanobacterium thermoautotrophicum assimilates CO2 via a novel pathway rather than via the Calvin cycle. The central intermediate of this pathway is acetyl CoA which is reductively carboxylated to pyruvate. Cell extracts of the organism contained phosphoenolpyruvate synthetase with a specific activity of 100 nmol min-1 mg-1 protein (65°C). Pyruvate kinase and pyruvate, phosphate dikinase were not detected. Phosphoenolpyruvate synthetase was partially purified (50-fold) and the following reaction stoichiometry was established:

$${\text{Pyruvate + ATP + H}}_{\text{2}} {\text{O }} \to {\text{ Phosphoenolpyruvate + AMP + P}}_{\text{i}} $$

The enzyme activity was depedent on free Mg2+ ions, NH +4 or K+ ions, and SH-groups. Mn2+, but not Ca2+, could partially substitute for Mg2+; Na+ could not substitute for K+ or NH +4 . The pH-optima,V max-values and the apparentK M-values for the substrates of the enzyme in both directions were determined. Thermodynamic, kinetic and regulatory features indicate that, in vivo, the enzyme functions in the direction of phosphoenolpyruvate synthesis from pyruvate. Not only is the synthesis of phosphoenolpyruvate via the PEP synthetase reaction energetically favorable; the enzyme also catalyzed this synthesis 100 times faster than the reverse reaction, the apparentK M value for pyruvate (40 μM) being low and the apparentK M value for phosphate (100 mM) being high. Furthermore, AMP, ADP, PP and α-ketoglutarate were inhibitors of PEP synthesis, indicating that the enzyme activity may be controlled in vivo. The role of phosphoenolpyruvate synthetase in autotrophic CO2 assimilation pathway ofMethanobacterium, as expected from previous labelling studies, is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PEP:

Phosphoenolpyruvate

DTE:

dithioerythritol

DTT:

dithiothreitol

TES:

N-tris-(hydrymethyl)methyl-2-aminoethanesulfonic acid

tricine:

N-tris-(hydroxymethyl)methylglycine

HFPES:

N-2-hydroxyethylpiperazine-N-ethanesulfonic acid

PP:

pyrophosphate

References

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296

    Google Scholar 

  • Benziman M, Palgi A (1970) Characterization and properties of the pyruvate phosphorylation system ofAcetobacter xylinum. J Bacteriol 104:211–218

    Google Scholar 

  • Bode C, Goebbel H, Strahler E (1960) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 6:419–422

    Google Scholar 

  • Brandis A, Thauer RK, Stetter KO (1981) Relatedness of strains ΔH and Marburg ofMethanobacterium thermoautotrophicum. Zbl Bakt Hyg, I. Abt Orig C2:311–317

    Google Scholar 

  • Buchanan BB (1974) Orthophosphate requirement for the formation of phosphoenolpyruvate from pyruvate by enzyme preparations from photosynthetic bacteria. J Bacteriol 119:1066–1068

    Google Scholar 

  • Buchanan BB (1979) Ferredoxin-linked carbon dioxide fixation in photosynthetic bacteria. In: M Gibbs, E Latzko (eds) Photosynthesis II (Encyclopedia of plant physiology: new series, Vol 6). Springer, Berlin Heidelberg New York, pp 416–424

    Google Scholar 

  • Calvin M, Bassham JA (1962) The photosynthesis of carbon compounds. WA Benjamin Inc, New York

    Google Scholar 

  • Cooper RA, Kornberg HL (1965) Net formation of phosphoenolpyruvate from pyruvate byEscherichia coli. Biochim Biophys Acta 104:618–620

    Google Scholar 

  • Cooper RA, Kornberg HL (1969) Phosphoenolpyruvate synthetase. In: SP Colowick, NO Kaplan (eds) Methods in enzymology, Vol 13. Academic Press, New York, pp 309–314

    Google Scholar 

  • Cooper RA, Kornberg HL (1974) Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase. In: PD Boyer (ed) The enzymes, 3rd ed, Vol 10. Academic Press, New York, pp 631–649

    Google Scholar 

  • Chulavatnatol M, Atkinson DE (1973) Phosphoenolpyruvate synthetase fromE. coli. Effects of adenylate energy charge and modifier concentrations. J Biol Chem 248:2712–2715

    Google Scholar 

  • Daniels L, Zeikus JG (1978) One-carbon metabolism in methanogenic bacteria: Analysis of short-term fixation products of14CO2 and14CH3OH incorporated into whole cells. J Bacteriol 136:75–84

    Google Scholar 

  • Evans HJ, Wood HG (1968) P-enolpyruvate synthesis from pyruvate. Fed Proc 27:588

    Google Scholar 

  • Evans MCW, Buchanan BB, Arnon DI (1966) A new ferredoxin dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci 55:928–934

    Google Scholar 

  • Eyzaguirre J (1979) Studies on bacterial pyruvate kinase: Properties of the enzyme fromPseudomonas aeruginosa andThermus thermophilus. Arch Biol Med Exper 12:605–610

    Google Scholar 

  • Ferdinand W (1976) The enzyme molecule, p 217. John Wiley & Sons, New York

    Google Scholar 

  • Frings W, Schlegel HG (1971) Synthese von Phosphoenolpyruvat aus Pyravat durch Extrakte ausHydrogenomonas eutropha. Arch Microbiol 79:220–230

    Google Scholar 

  • Fuchs G, Stupperich E (1978) Evidence for an incomplete reductive carboxylic acid cycle inMethanobacterium thermoautotrophicum. Arch Microbiol 118:121–125

    Google Scholar 

  • Fuchs G, Stupperich E (1980) Acetyl CoA, a central intermediate of autotrophic CO2 fixation inMethanobacterium thermoautotrophicum. Arch Microbiol 127:267–272

    Google Scholar 

  • Fuchs G, Stupperich E, Jaenchen R (1980b) Autotrophic CO2 fixation inChlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Arch Microbiol 128:56–63

    Google Scholar 

  • Fuchs G, Stupperich E (1982) Autotrophic CO2 fixation pathway inMethanobacterium thermoautotrophicum. Zbl Bakt Hyg I. Abt Orig C 3:277–288

    Google Scholar 

  • Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum. Arch Microbiol 117:61–66

    Google Scholar 

  • Fuchs G, Stupperich E, Eden G (1980a) Autotrophic CO2 fixation inChlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128:64–71

    Google Scholar 

  • Hatch MD, Slack CR (1968) A new enzyme for the interconversion of pyruvate and phosphopyruvate and its role in the C4 dicarboxylic acid pathway of photosynthesis. Biochem J 106:141–146

    Google Scholar 

  • Ivanovsky RN, Sintsov NV, Kondratieva EN (1980) ATP-linked citrate lyase activity in the green sulfur bacteriumChlorobium limicola formathiosulfatophilum. Arch Microbiol 128:239–241

    Google Scholar 

  • Leloir LF, Cardini CE (1957) Characterization of phosphorus compounds by acid lability. In: SP Colowick, NO Kaplan (eds) Methods in enzymology, Vol 3. Academic Press, New York, pp 840–850

    Google Scholar 

  • Pfennig N, Trüper HG (1974) The phototrophic bacteria. In: RE Buchanan, NE Gibbons (eds) Bergey's manual of determinative bacteriology, 8 ed. Williams and Wilkins Co, Baltimore, pp 24–64

    Google Scholar 

  • Quayle JR, Ferenci T (1978) Evolutionary aspects of autotrophy. Microbiol Rev 42:251–273

    Google Scholar 

  • Reeves RE (1968) A new enzyme with the glycolytic function of pyruvate kinase. J Biol Chem 243:3202–3204

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth ofMethanobacterium thermoautotrophicum. Arch Microbiol 123:105–107

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s , μmax,Y s) ofMethanobacterium thermoautotrophicum. Arch Microbiol 127: 59–65

    Google Scholar 

  • Sols A (1981) Multimodulation of enzyme activity. Current topics in cellular regulation 19:77–101

    Google Scholar 

  • Stupperich E, Fuchs G (1981) Products of CO2 fixation and14C labelling pattern of alanine inMethanobacterium thermoautotrophicum pulse-labelled with14CO2. Arch Microbiol 130:294–300

    Google Scholar 

  • Taylor GT, Kelly DP, Pirt SJ (1976) Intermediary metabolism in methanogenic bacteria. In: HG Schlegel, G Gottschalk, N Pfennig (eds) Proceedings of the symposium “Microbial production and utilization of gases (H2, CH4, CO)”. Akademie der Wissenschaften zu Göttingen, E. Goltze Verlag, Göttingen, pp 173–180

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic bacteria. Bacteriol Rev 41:100–180

    Google Scholar 

  • Zeikus JG, Fuchs G, Kenealy W, Thauer RK (1977) Oxidoreductases involved in cell carbon synthesis ofMethanobacterium thermoautotrophicum. J Bacteriol 132:604–613

    Google Scholar 

  • Zeikus JG, Wolfe RS (1972)Methanobacterium thermoautotrophicum sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyzaguirre, J., Jansen, K. & Fuchs, G. Phosphoenolpyruvate synthetase inMethanobacterium thermoautotrophicum . Arch. Microbiol. 132, 67–74 (1982). https://doi.org/10.1007/BF00690820

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690820

Key words

Navigation