Skip to main content
Log in

Signal transduction pathways involving the raf proto-oncogene

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The raf genes encode for a family of cytoplasmic proteins (A-raf, B-raf and c-raf-1) with associated serine/threonine kinase activities. Raf-1 is an important mediator of signals involving cell growth, transformation and differentiation. It is activated in response to a wide variety of extracellular stimuli such as insulin, nerve growth factor (NGF), platelet derived-growth factor (PDGF), and in response to expression of oncogenes, v-src and v-ras, in a cell-specific manner. Recently, the first physiological substrate for Raf-1 protein kinase was identified. Raf-1 was found to phosphorylate and activate Mitogen-Activated Protein Kinase Kinase (MEK), an activator of MAP kinase, thus linking the Raf-1 signaling pathway with that of MAP kinase. Cell specific differences in signalling pathways involving Raf-1 and MAP kinase have also been discovered. Accumulating evidence indicates that membrane tyrosine kinases, ras, Raf-1, MEK and MAP kinase are interconnected via a complex network rather than via a linear pathway involving multiple substrates and feedback loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varmus HE: Form and function of retroviral proviruses. Science 216: 812–819, 1982

    Google Scholar 

  2. Mark GE, Rapp UR: Primary structure ofv-raf: relatedness to thesrc family of oncogenes. Science 224: 285–289, 1984

    Google Scholar 

  3. Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds FH, Stephenson JR: Structure and biological activity ofv-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci USA 80: 4218–4222, 1983

    Google Scholar 

  4. Rapp UR, Reynolds FH, Stephenson JR: New mammalian transforming retrovirus: demonstration of a polyprotein gene product. J Virol 45: 914–924, 1983

    Google Scholar 

  5. Moelling K, Heimann B, Beimling P, Rapp UR, Sander T: Serine- and threonine-specific protein kinase activities of purified GAG-MIL and GAG-RAF proteins. Nature 312: 558–561, 1984

    Google Scholar 

  6. Bonner TI, Kerby SB, Sutrave P, Gunnell MA, Mark G, Rapp UR: Structure and biological activity of human homologs of theraf/mil oncogene. Mol Cell Biol 5: 1400–1407, 1985

    Google Scholar 

  7. Bonner TI, Oppermann H, Seeburg P, Kerby SB, Ur R: The complete coding sequence of the human c-raf-1 protooncogene and the corresponding structure of the c-raf-1 gene. Nucl Acids Res 14: 1009–1015, 1986

    Google Scholar 

  8. Beck TW, Huleihel M, Gunnell M, Bonner T, Rapp UR: The complete coding sequence of the human A-raf-1 oncogene and transforming activity of a human A-raf carrying retrovirus. Nucl Acids Res 15: 595–609, 1987

    Google Scholar 

  9. Ikawa S, Fukui M, Ueyama Y, Tamaoki N, Yamamoto T, Toyoshima K: B-raf, a new member of the raf family is activated by DNA rearrangement. Mol Cell Biol 8: 2651–2654, 1988

    Google Scholar 

  10. Sithanandam G, Kolch W, Duh FM, Rapp UR: Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene 5: 1775–1780, 1990

    Google Scholar 

  11. Nishida Y, Hata M, Ayaki T, Ryo H, Yamagata M, Shimizu K, Nishizuka Y: Proliferation of both somatic and germ cells is affected in the Drosophila mutants of RAF proto-oncogene. EMBO 7: 775–781, 1988

    Google Scholar 

  12. Mark GE, MacIntyre RJ, Digan ME, Ambrosio L, Perrimon N: Drosophila melanogaster homologues of the RAF oncogene. Mol Cell Biol 7: 2134–2139, 1987

    Google Scholar 

  13. Stephens RM: 95-Kilodalton B-raf serine/threonine kinase: identification of the protein and its major autophosphorylation site. Mol Cell Biol 12: 3733–3742, 1992

    Google Scholar 

  14. Storm SM, Cleveland JL, Rapp UR: Expression of raf family proto-oncogenes in normal mouse tissues. Oncogene 5: 345–351, 1990

    Google Scholar 

  15. Li P, Wood K, Mamon H, Haser W, Roberts TM: Raf-1: a kinase currently without a cause but not lacking in effects. Cell 64: 479–482, 1991

    Google Scholar 

  16. Blenis J: Signal transduction via MAP kinases: proceed at your own RSK. in press, 1993

  17. Cantley LC, Auger K, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S: Oncogenes and signal transduction. Cell 64: 281–302, 1991

    Google Scholar 

  18. Pelech SL, Sanghera JA: MAP kinases: charting the regulatory pathways. Science 257: 1355–1356, 1992

    Google Scholar 

  19. Stanton VP, Cooper GM: Activation of human RAF transformation genes by deletion of normal amino-terminal codding sequences. Mol Cell Biol 7: 1171–1179, 1987

    Google Scholar 

  20. Tahira T, Ochiai M, Hayashi K, Nagao M, Sugimura T: Activation of human c-raf-1 by replacing the N-terminal region with different sequences. Nucl Acids Res 15: 4809–4820, 1987

    Google Scholar 

  21. Stanton VP, Nichols DW, Laudano AP, Cooper GM: Definition of the human RAF amino-terminal regulator region by deletion mutagenesis. Mol Cell Biol 9: 639–647, 1989

    Google Scholar 

  22. Ishikawa F, Sakai R, Ochiai M, Takaku F, Sigimura T, Nagao M: Identification of a transformation activity suppressing sequence in the c-RAF oncogene. Oncogene 3: 653–658, 1988

    Google Scholar 

  23. Heidecker G, Huleihel M, Cleveland JL, Beck P, LLoyd P, Pawson T, Rapp UR: Mutational activation of c-raf-1 and definition of the minimal transforming sequence. Mol Cell Biol 10: 2503–2512, 1990

    Google Scholar 

  24. Hanks SK, Quinn AM, Hunter T: Protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52, 1988

    Google Scholar 

  25. Shimizu K, Nakatsu Y, Sekiguchi M, Hokamura K, Tanaka K, Terada M, Sugimura T: Molecular cloning of an activated human oncogene, homologous to v-raf, from primary stomach cancer. Proc Natl Acad Sci 82: 5641–5645, 1985

    Google Scholar 

  26. Molders H, Defesche J, Muller D, Bonner TI, Rapp UR, Muller R: Integration of transfected LTR sequences into the c-raf proto-oncogene: activation by promoter insertion. EMBO 4: 693–698, 1985

    Google Scholar 

  27. Isumi T, Tamemoto H, Nagao M, Kadowaki T, Takaku F, Kasuga M: Insulin and platelet-derived growth factors stimulate phosphorylation of the c-RAF product at serine and threonine residues in intact cells. J Biol Chem 266: 7933–7939, 1991

    Google Scholar 

  28. Williams NG, Roberts TM, Li P: Both p21ras and pp60v-src are required, but neither alone is sufficient, to activate the Raf-1 kinase. Proc Natl Acad Sci USA 89: 2922–2926, 1992

    Google Scholar 

  29. Morrison DK, Heidecker G, Rapp UR, Copeland TD: Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem in press, 1993

  30. Smith MR, DeGudicibus SJ, Stacy DW: Requirement for cras proteins during viral oncogene transformation. Nature 320: 540–543, 1986

    Google Scholar 

  31. Stacey DW, Tsai MH, Yu CL, Smith JK: Critical role of cellular ras proteins in proliferative signal transduction. Cold Spring Harbor Symposia on Quant. Biol 53: 871–881, 1988

    Google Scholar 

  32. Morrison DK, Kaplan DR, Rapp UR, Roberts TM: Signal transduction from membrane to cytoplasm: growth factors and membrane-bound oncogene products increase RAF-1 phosphorylation and associated protein kinase activity. Proc Natl Acad Sci USA 85: 8855–8859, 1988

    Google Scholar 

  33. Oshima M, Sidhanandam G, Rapp UR, Guroff G: The phosphorylation and activation of B-raf in PC12 cells stimulated by nerve growth factor. J Biol Chem 266: 23753–23760, 1991

    Google Scholar 

  34. Wood KW, Sarnecki C, Roberts TM, Blenis J: ras mediates nerve growth factor receptor modulation of three signaltransducing protein kinases: MAP kinase, Raf-1, and RSK. Cell 68: 1041–1050, 1992

    Google Scholar 

  35. Bacharini M, Sabatini DM, App H, Rapp UR, Stanley RE: Colony stimulatin factor-1 (CSF-1) stimulates temperature dependent phosphorylation and activation of the RAF-1 proto-oncogene product. EMBO 9: 3649–3657, 1990

    Google Scholar 

  36. App H, Hazan R, Zilberstein A, Ullrich A, Schlessinger J, Rapp UR: Epidermal growth factor (EGF) stimulates association and kinase activity of RAF-1 with the EGF receptor. Mol Cell Biol 11: 913–919, 1991

    Google Scholar 

  37. Blackshear PJ, Haupt DM, App H, Rapp UR: Insulin activates the RAF-1 protein kinase. J Biol Chem 265: 1231–1234, 1990

    Google Scholar 

  38. Kovacina KS, Yonezawa K, Brautigan DL, Tonks NK, Rapp UR, Roth RA: Insulin activates the kinase activity of the RAF-1 proto-oncogene by increasing its serine phosphorylation. J Biol Chem 265: 12115–12118, 1990

    Google Scholar 

  39. Turner B, Rapp UR, App H, Greene M, Dobashi K, Reed J: Interleukin 2 induces tyrosine phosphorylation and activation of P72-74 Raf-1 kinase in a T-cell line. Proc Natl Acad Sci USA 88: 1227–1231, 1991

    Google Scholar 

  40. Zmuidzinas A, Mamon HJ, Roberts TR, Smith KA: Interleukin-2 triggered Raf-1 expression, phosphorylation, and associated kinase activity increase through G1 and S in CD3-stimulated primary human T cells. Mol Cell Biol 11: 2794–2803, 1991

    Google Scholar 

  41. Carroll MP, Clark-Lewis I, Rapp UR, Stratford May W: Interleukin-3 and granulocyte-macrophage colony-stimulating factor mediate rapid phosphorylation and activation of cytosolic c-raf. J Biol Chem 265: 19812–19817, 1990

    Google Scholar 

  42. Carroll MP, Spivak JL, McMahon M, Weich N, Rapp UR, May WS: Erythropoietin induces Raf-1 activation and Raf-1 is required for erythropoietin-mediated proliferation. J Biol Chem 266: 14964–14969, 1991

    Google Scholar 

  43. Kanakura Y, Druker B, Wood KW, Mamon HJ, Okuda K, Roberts TM, Griffin JD: Granulocyte-macrophage colony-stimulating factor and interleukin-3 induce rapid phospho-rylation and activation of the proto-oncogene Raf-1 in a human factor dependent myeloid cell line. Blood 77: 243–248, 1991

    Google Scholar 

  44. Siegel JN, Klausner RD, Rapp UR, Samelson LE: T cell antigen receptor engagement stimulates c-RAF phosphorylation and induces c-RAF associated kinase activity via a protein kinase C-dependent pathway. J Biol Chem 265: 18472–18480, 1990

    Google Scholar 

  45. Morrison DK, Kaplan DR, Escobedo JA, Rapp UR, Roberts TM, Williams LT: Direct activation of the serine/threonine kinase activity of RAF-1 through tyrosine phosphorylation by the PDGF β-receptor. Cell 58: 649–657, 1989

    Google Scholar 

  46. Oshima M, Sithanandam G, Rapp UR, Guroff G: The phosphorylation and activation of B-raf in PC12 cells stimulated by nerve growth factor. J Biol Chem 266: 23753–23760, 1991

    Google Scholar 

  47. Ashworth A, Nakielny S, Cohen P, Marshall C: The amino acid sequence of a mammalian MAP kinase kinase. Oncogene 7: 2555–2556, 1992

    Google Scholar 

  48. Crews CM, Alessandrini A, Erikson RL: The primary structure of MEK, a protein kinase that phosphorylates theERK gene product. Science 258: 478–480, 1992

    Google Scholar 

  49. Wu J, Harrison JK, Vincent LA, Haystead C, Haystead TA, Michel H, Hunt DF, Lynch KR, Sturgill TW: Molecular structure of a protein-tyrosine kinase activating p42 mitogen-activated protein (MAP) kinase: MAP kinase kinase. Proc Natl Acad Sci 90: 173–177, 1993

    Google Scholar 

  50. Macdonald SG, Crews C, Wu L, Driller J, Clark R, Erikson RL, McCormick F: Reconstitution of the Raf-1 MEK-ERK signal transduction pathwayin vitro. Mol Cell Biol submitted, 1993

  51. Feig L: The many roads that lead to Ras. Science 260: 767–768, 1993

    Google Scholar 

  52. Marshall CJ: How does p21ras transform cells? TIG 7: 91–95, 1991

    Google Scholar 

  53. Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348: 125–132, 1990

    Google Scholar 

  54. Trahey M, McCormick F: A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238: 542–545, 1987

    Google Scholar 

  55. Wolfman A, Macara IG: A cytosolic protein catalyzes the release of GDP from p21. Science 248: 247–249, 1990

    Google Scholar 

  56. West M, Kung HF, Kamata T: A novel membrane factor stimulates guanine nucleotide exchange reaction of ras proteins. FEB Lett 259: 245–248, 1990

    Google Scholar 

  57. Buday L, Downward J: Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73: 611, 1993

    Google Scholar 

  58. Buday L, Downward J: Epidermal growth factor regulates the exchange rate of guanine nucleotides on p21ras in fibroblasts. Mol Cell Biol 13: 1903-1993

  59. Gulbins E, Coggeshall KM, Baier G, Katzav S, Burn P, Altman A: Tyrosine kinase-stimulated guanine nucleotide exchange activity of Vav in T cell activation. Science 260: 822–825, 1993

    Google Scholar 

  60. Medema RH, De Vries-Smits AMM, Zon GCM, Maassen JA, Bos JL: Ras activation by insulin and epidermal growth factor through enhanced exchange of guanine nucleotided on p21ras. Mol Cell Biol 13: 155, 1993

    Google Scholar 

  61. Downward J, Graves JD, Warne PH, Rayter S, Cantrell DA: Stimulation of p21ras upon T-cell activation. Nature 346: 719–723, 1990

    Google Scholar 

  62. Reed JC, Yum S, Cuddy MP, Turner BC, Rapp UR: Differential regulation of the p72-74 RAF-1 kinase in 3T3 fibroblasts expressingras orsrc oncogenes. Cell Growth and Diff 2: 235–243, 1991

    Google Scholar 

  63. Doerfler W, Bohm P: The molecular biology of Baculoviruses. In: (eds) Current Topics in Microbiology and Immunology. Springer-Verlag, 1986, pp 7-15

  64. Zhang K, DeClue JE, Vass WC, Papageorge AG, McCormick F, Lowy DR: Suppression of c-ras transformation by GTPase-activating protein. Nature 346: 754–756, 1990

    Google Scholar 

  65. Williams NG, Paradis H, Agarwal S, Charest DL, Pelech SL, Roberts TM: Raf-1 and p21v-ras cooperate in the activation of MAP kinase. Proc Natl Acad Sci, 1993

  66. Kyriakis JM, App H, Zhang X, Banerjee P, Brautigan DL, Rapp UR, Avruch J: Raf-1 activates MAP kinase-kinase. Nature 358: 417–421, 1992

    Google Scholar 

  67. Dent P, Haystead TA, Haser W, Vincent LA, Roberts TM, Sturgill TW: v-Raf protein kinase activates mitogen activated protein (MAP) kinase kinase in NIH3T3 cells andin vitro. Science 257: 1404–1407, 1992

    Google Scholar 

  68. Howe LR, Leevers SJ, Gomez N, Nakielny S, Cohen P, Marshall CJ: Activation of the MAP kinase pathway by the protein kinase raf. Cell 71: 335–342, 1992

    Google Scholar 

  69. Boulton TG, Cobb MH: Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regul 2: 357–371, 1991

    Google Scholar 

  70. Cobb MH, Boulton TG, Robbins DJ: Extracellular signal-regulated kinases: ERKs in progress. Cell Regul 2: 965–978, 1991

    Google Scholar 

  71. Pelech SL, Sanghera JS: Mitogen activated protein kinases: versitle transducers for cell signalling. TIBS 17: 233–238, 1992

    Google Scholar 

  72. Nakielny S, Cohen P, Wu J, Sturgill T: MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase. EMBO J 11: 2123–2129, 1992

    Google Scholar 

  73. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD: ERKs: a family of protein-serine/threonine kinases that are activated by tyrosine phosphorylated in response to insulin and NGF. Cell 65: 663–675, 1991

    Google Scholar 

  74. Robbins DJ, Cheng M, Zhen E, Vanderbilt CA, Feig LA, Cobb MH: Evidence for a Ras-dependent extracellular signal-regulated protein kinase (ERK) cascade. Proc Natl Acad Sci USA 89: 6924–6928, 1992

    Google Scholar 

  75. de Vries-Smits AMM, Burgering BM, Leevers SJ, Marshall CJ, Bos JL: Involvement of p21ras in activation of extracellular signal-regulated kinase 2. Nature 357: 602–604, 1992

    Google Scholar 

  76. Leevers SL, Marshall CJ: Activation of extracellular signal-regulated kinase, ERK2 by p21ras oncoprotein. EMBO J 11: 569–574, 1992

    Google Scholar 

  77. Gupta SK, Gallego C, Johnson GL, Heasley LE: MAP kinase is constitutively activated in gip2 and src transformed rat 1a fibroblasts. J Biol Chem 267: 7987–7990, 1992

    Google Scholar 

  78. Thomas SM, DeMarco M, D'Arcangelo G, Halegoua S, Brugge JS: Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68: 1031–1040, 1992

    Google Scholar 

  79. Posada J, Cooper JA: Requirements for phosphorylation of MAP kinase during meiosis in xenopus oocytes. Science 255: 212–215, 1992

    Google Scholar 

  80. Payne DM, Rossomando AJ, Martino P, Erickson AK, Her JH, Shabanowitz J, Hunt DF, Weber MJ, Sturgill TW: Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J 10: 885–892, 1991

    Google Scholar 

  81. Gomez N, Cohen P: Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature 353: 170–173, 1991

    Google Scholar 

  82. Ahn NG, Weiel JE, Chan CP, Krebs EG: Identification of multiple epidermal growth factor-stimulated protein serine/threonine kinases from swiss 3T3 cells. J Biol Chem 265: 11487–11494, 1990

    Google Scholar 

  83. Seger R, Ahn NG, Posada J, Munar ES, Jensen AM, Cooper JA: Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. J Biol Chem 267: 14373–14381, 1992

    Google Scholar 

  84. Matsuda S, Kosako H, Takenaka K, Moriyama K, Sakai H, Akiyama T, Gotoh Y, Nishida E: Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade. EMBO J 11: 973–982, 1992

    Google Scholar 

  85. Anderson NG, Li P, Marsden LA, Williams NG, Roberts TM, Sturgill TM: Raf-1 is a potential substrate for mitogenactivated protein kinasein vivo. Biochem J 277: 573–576, 1991

    Google Scholar 

  86. Lee R, Cobb MH, Blackshear PJ: Evidence that extracellular signal-regulated kinases are the insulin-activated Raf-1 kinase kinase. J Biol Chem 267: 1088–1092, 1992

    Google Scholar 

  87. Gallego C, Gupta SK, Heasley LE, Qian N, Johnson GL: Mitogen-activated protein kinase activation resulting from selective onocogene expression in NIH 3T3 and Rat 1a cells. Proc Natl Acad Sci USA 89: 7355–7359, 1992

    Google Scholar 

  88. Itoh T, Kaibuchi K, Masuda T, Yamamoto T, Matsuura Y, Maeda A, Shimizu K, Takai Y: A protein factor for ras p21-dependent activation of MAP kinase through MAP kinase kinase. Proc Natl Acad Sci 90: 975–979, 1993

    Google Scholar 

  89. Lu X, Chou T, Williams NG, Roberts TM, Perrimon N: Control of cell fate determination by p21ras/Ras1, an essential component of torso signaling in drosophila. Genes & Dev 7: 621–632, 1993

    Google Scholar 

  90. Dickson B, Sprenger F, Morrison D, Hafen E: Raf functions downstream of Ras1 in the sevenless signal transduction pathway. Nature 360: 600–603, 1992

    Google Scholar 

  91. Izquierdo M, Downward J, Graves JD, Cantrell DA: Role of protein kinase C in T-cell antigen receptor regulation of p21ras: evidence that two p21ras regulatory pathways coexist in T cells. Mol Cell Biol 12: 3305–3312, 1992

    Google Scholar 

  92. Sozeri O, Vollmer K, Liyanage M, Frith D, Kour G, Mark GE, Stabel S: Activation of the c-raf protein kinase by protein kinase C phosphorylation. Oncogene 7: 2259–2262, 1992

    Google Scholar 

  93. Roberts TM: A signal chain of events. Nature 360: 534–535, 1992

    Google Scholar 

  94. Nel AE, Hanekom C, Hultin L: Protein kinase C plays a role in the induction of tyrosine phosphorylation of lymphoid MAP Kinase. J Immun 147: 1933–1939, 1991

    Google Scholar 

  95. Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL: A divergence in the MAP kinase regulatory network defined by MEK KInase and Raf. Science 260: 315–319, 1993

    Google Scholar 

  96. Moodie SA, Willumsen, BM, Weber MJ, Wolfman A: Complexes of Ras.GTP with Raf-1 and Mitogen-Activated Protein Kinase Kinase. Science 260: 1658–1661, 1993

    Google Scholar 

  97. Zhang X-F, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J: Normal and oncogenic p21ras proteins bind to the aminoterminal regulatory domain of c-Raf-1. Nature 364: 308–313, 1993

    Google Scholar 

  98. Warne PH, Viciana PR, Downward J: Direct interaction of Ras and the amino-terminal region of Raf-1in vitro. Nature 364: 352–355, 1993

    Google Scholar 

  99. Hughes DA, Ashworth A, Marshall CJ: Complementation of byr1 in fission yeast by mammalian MAP kinase kinase requires coexpression of Raf kinase. Nature 364: 349–352, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, N.G., Roberts, T.M. Signal transduction pathways involving the raf proto-oncogene. Cancer Metast Rev 13, 105–116 (1994). https://doi.org/10.1007/BF00690421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690421

Key words

Navigation