Skip to main content
Log in

Electromagnetic studies of global geodynamic processes

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The deep electromagnetic sounding (DES) technique is one of the few geophysical methods, along with seismology, gravity, heat flow, which may be use to probe the structure of the Earth's mantle directly. The interpretation of the DESs may provide electrical conductivity profiles down to the upper part of the lower mantle. The electrical conductivity is extremely sensitive to most of the thermodynamic processes we believe are acting in the Earth's mantle (temperature increases, partial melting, phase transition and to a lesser extent pressure). Therefore, in principle, results from DES along with laboratory measurements could be used to constrain models of these processes.

The DES technique is reviewed in the light of recent results obtained in a variety of domains: data acquisition and analysis, global induction modeling and data inversion and interpretation.

The mechanisms and the importance of surface distortions of the DES data are reviewed and techniques to model them are discussed. The recent results in terms of the conductivity distribution in the mantle from local and global DES are presented and a tentative synthesis is proposed.

The geodynamic interpretations of the deep conductivity structures are reviewed. The existence of mantle lateral heterogeneities in conductivity at all scales and depths for which electromagnetic data are available is now well documented. A comparison with global results from seismology is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banks, R.: 1969, ‘Geomagnetic Variations and the Electrical Conductivity of the Upper Mantle’,Geophys. J. R. Astr. Soc. 17, 457–487.

    Google Scholar 

  • Beamish, D., Hewson-Browne, R. C., Kendall, P. C., Malin, S. R. C. and Quinney, D. A.: 1983, ‘Induction in Arbitrarily Shaped Oceans - VI. Oceans of Variable Depth’,Geophys. J. R. Astr. Soc. 75, 387–398.

    Google Scholar 

  • Berdichevski, M. N., Fainberg, B., Rotanova, N. M., Smirnov, J. B. and Vanayan, L. L.: 1976, ‘Deep Electromagnetic Investigations’,Ann. Geophys. 32, 143–155.

    Google Scholar 

  • Bullard, E. C. and Parker, R. L.: 1970, Electromagnetic Induction in the Oceans, In E. C. Bullard and J. L. Worwel (eds),The Sea, Vol IV, Wiley, New York, pp. 695–730.

    Google Scholar 

  • Campbell, W. H.: 1987, ‘The Upper Mantle Conductivity Analysis Method Using Observatory Records of the Geomagnetic Field’,PAGEOPH 125, 427–457.

    Google Scholar 

  • Campbell, W. H. and Schiffmacher, E. R.: 1985, ‘Quiet Ionospheric Currents of the Southern Hemisphere Derived from Geomagnetic Records’,J. Geophys. Res. 90, 6475–6484.

    Google Scholar 

  • Campbell, W. H. and Schiffmacher, E. R.: 1988, ‘Upper Mantle Electrical Conductivity for Seven Subcontinental Regions of the Earth’,J. Geomag. Geoelectr. 40, 1387–1406.

    Google Scholar 

  • Cermak, V. and Lastovickova, M.: 1987, ‘Temperature Profiles in the Earth of Importance to Deep Electrical Conductivity Models’,PAGEOPH 125, 255–284.

    Google Scholar 

  • Chapman, S.: 1919, ‘The Solar and Lunar Diurnal Variation of the Earth's Magnetism’,Phil. Trans. R. Soc. Lond. (A),218, 1–118.

    Google Scholar 

  • Chapman, S. and Price, A.: 1930, ‘The Electric and Magnetic State of the Interior of the Earth as Inferred from Terrestrial Magnetic Variations’,Phil. Trans. R. Soc. Lond. (A),229, 427–460.

    Google Scholar 

  • Chen, P. F. and Fung, P. C. W.: 1991, ‘Electromagnetic Response Function for the Period of 27 Day in the Chinese Region’,J. Geomag. Geoelectr. 43, 979–987.

    Google Scholar 

  • Counil, J. L., Menvielle, M. and Le Mouel, J. L.: 1987, ‘Upper Mantle Lateral Heterogeneities and Magnetotelluric Daily Variation Data’,PAGEOPH 125, 1–22.

    Google Scholar 

  • Dmitriev, V. I., Rotanova, N. M., Zakharova, O. K. and Fiskina, M. V.: 1987, ‘Models of Deep Electrical Conductivity Obtained from Data on Global Magnetic Variational Sounding’,PAGEOPH 125(2/3), 409–426.

    Google Scholar 

  • Duhau, S. and Favetto, A.: 1990, ‘The Conductosphere Depth at Equatorial Latitudes as Determined from Geomagnetic Daily Variations’,PAGEOPH 134, 559–574.

    Google Scholar 

  • Fainberg, E. B.: 1980, ‘Electromagnetic Induction in the World Ocean’,Geophys. Surv. 4, 157–172.

    Google Scholar 

  • Fainberg, E. B. and Singer, B. Sh.: 1980, ‘Electromagnetic Induction in a Non-Uniform Spherical Model of the Earth’,Ann. Geophys. 36, 127–134.

    Google Scholar 

  • Fainberg, E. B., Kuvshinov, A. V. and Singer, B. Sh.: 1991a, ‘Electromagnetic Induction in a Spherical Earth with Non-Uniform Oceans and Continents in Electric Contact with the Underlying Medium -I. Theory, method and example,Geophys. J. Int. 102, 273–281.

    Google Scholar 

  • Fainberg, E. B., Kuvshinov, A. V. and Singer, B. Sh.: 1991b, ‘Electromagnetic Induction in a Spherical Earth with Non-Uniform Oceans and Continents in Electric Contact with the Underlying Medium -II. Bimodal Global Geomagnetic Sounding of the Lithosphere’,Geophys. J. Int. 102, 283–286.

    Google Scholar 

  • Hagger, B. H. and R. W. Clayton: 1989, ‘Constraints on the Structure of Mantle Convection Using Seismic Observations, Flow Models and the Geoid, In W. R. Peltier,Mantle Convection, Gordon and Breach Science Publishers, pp. 6577#x2013;764.

  • Hibberd, F. H. and Davidson, R. E.: 1988, ‘Global Scale of the Day-to-Day Variability of Sq’,Geophys. J. 92, 315–321.

    Google Scholar 

  • Hobbs, B. A.: 1987, Conductivity profiles from global data,PAGEOPH 125, 393–407.

    Google Scholar 

  • Hobbs, B. A. and Dawes, G. J. K.: 1979, ‘Calculation of the Effect of the Oceans on the Geomagnetic Variations with an Application to the Sq Field During the IGY’,J. Geophys. 46, 273–289.

    Google Scholar 

  • Honkura, Y.: 1978, ‘Electrical Conductivity Anomalies in the Earth’,Geophys. Surv. 3, 225–254.

    Google Scholar 

  • Kharin, E. P. and Semenov, V. YU.: 1986, ‘The Curve of Deep Magnetovariation Sounding in the Pacific Ocean Obtained by Continuum Spectrum Method’,Annales Geophysicae 4B, 329–334.

    Google Scholar 

  • Kuvshinov, A. V., Pankratov, O. V. and Singer, B. Sh.: 1990, ‘The Effect of the Oceans and Sedimentary Cover on Global Magnetovariational Field Distribution’,PAGEOPH 134, 533–540.

    Google Scholar 

  • Lognonné, P. and Romanowicz, B.: 1990, ‘Modelling of Coupled Normal Modes of the Earth: The Spectral Method’,Geophys. J. Int. 102, 365–395.

    Google Scholar 

  • Mackie, R. L., Bennett, B. T. and Madden, T. R.: 1988, ‘Long-Period Magnetotelluric Measurements Near the Central California coast: A Land-Locked View of the Conductivity Structure Under the Pacific Ocean’,Geophys. J. 95, 181–194.

    Google Scholar 

  • Malin, S. R. C. and Gupta, J. C.: 1977, ‘The Sq Current System During the International Geophysical Year’,Geophys. J. R. Astr. Soc. 49, 515–529.

    Google Scholar 

  • Menvielle, M., Rossignol, J. C. and Tarits, P.: 1982, ‘The Coast Effect in Terms of Deviated Electric Currents: A Numerical Study’,Phys. Earth Planet. Int. 28, 118–128.

    Google Scholar 

  • Omura, K.: 1991, ‘Change of Electrical Conductivity of Olivine Associated with the Olivine-Spinel Transition’,Phys. Earth Planet. Int. 65, 292–307.

    Google Scholar 

  • Parkinson, W. D. and Hutton, V. R. S.: 1989, ‘The Electrical Conductivity of the Earth’, in J. A. Jacobs (ed.),Geomagnetism, vol. 3, Academic Press, pp. 261–322.

  • Petersons, H. F. and Anderssen, R. S.: 1990, ‘On the Spherical Symmetry of the Electrical Conductivity of the Earth's Mantle’,J. Geomag. Geoelectr. 42, 1309–1324.

    Google Scholar 

  • Phinney, R. A. and Burridge, R.: 1959, ‘Representation of the Elastic-Gravitational Excitation of a Spherical Earth Model by Generalized Spherical Harmonics’,Geophys. J. R. Astr. Soc. 34, 451–487.

    Google Scholar 

  • Rikitake, T.: 1961, ‘Sq and Ocean’,J. Geophys. Res. 66, 3245–3254.

    Google Scholar 

  • Rikitake, T.: 1966, ‘Electromagnetism and the Earth's Interior’, Elsevier, Amsterdam.

    Google Scholar 

  • Ritz, M. and Robineau B.: 1986, ‘Crustal and Upper Mantle Electrical Conductivity Structures in West Africa: Geodynamic Implications’,Tectonophysics 124, 115–132.

    Google Scholar 

  • Roberts, R. G.: 1983, ‘Electromagnetic Evidence for Lateral Inhomogeneities Within the Earth's Upper Mantle’,Phys. Earth Planet. Int. 33, 198–212.

    Google Scholar 

  • Roberts, R. G.: 1984, ‘The Long-Period Electromagnetic Response of the Earth’,Geophys. J. R. Astr. Soc. 78, 547–572.

    Google Scholar 

  • Roberts, R. G.: 1986a, ‘The Deep Electrical Structure of the Earth’,Geophys. J. R. Astr. Soc. 85, 583–600.

    Google Scholar 

  • Roberts, R. G.: 1986b, ‘Global Electromagnetic Induction’,Surv. Geophys. 8, 339–374.

    Google Scholar 

  • Schmucker, U.: 1987, ‘Substitute Conductors for Electromagnetic Response Estimates’,PAGEOPH 125, 341–367.

    Google Scholar 

  • Schultz, A.: 1990, ‘On the Vertical Gradient and Associated Heterogeneity in Mantle Electrical Conductivity’,Phys. Earth Planet. Int. 64, 68–86.

    Google Scholar 

  • Schultz, A. and Larsen, J. C.: 1987, ‘On the Electrical Conductivity of the Mid-Mantle: I. Calculation of Equivalent Scalar Magnetotelluric Response Functions’,Geophys. J. R. Astr. Soc. 88, 733–761.

    Google Scholar 

  • Schultz, A. and Larsen, J.: 1990, ‘On the Electrical Conductivity of the Mid-Mantle: II. Delineation of Heterogeneity by Application of Extremal Inverse Solutions’,Geophys. J. Int. 101, 565–580.

    Google Scholar 

  • Schultz, A., Booker, J. and Larsen, J.: 1987, ‘Lake Bottom Magnetotellurics’,J. Geophys. Res. 92, 10,639–10,649.

    Google Scholar 

  • Schuster, A.: 1889, ‘The Diurnal Variation of Terrestrial Magnetism’,Phil. Trans. R. Soc. Lond. (A),180, 467–518.

    Google Scholar 

  • Semenov, V. YU.: 1989, ‘Evaluation of Mantle Conductivity Beneath Northern Hemisphere's Continents’,Izvestiya Earth Physics 25, 221–226.

    Google Scholar 

  • Shearer, P. M. and Masters, T. G.: 1992, ‘Global Mapping of Topography on the 660-km Discontinuity,Nature 355, 791–796.

    Google Scholar 

  • Takeda, M.: 1985, ‘UT Variation of Internal Sq Current and the Oceanic Effect During 1980 March 1–18’,J. Geophys. J. R. Astr. Soc. 80, 649–659.

    Google Scholar 

  • Takeda, M.: 1989, ‘Mantle Conductivity from the Geomagnetic Sq Field’,J. Geomag. Geoelec. 41, 643–646.

    Google Scholar 

  • Takeda, M.: 1991, ‘Electric Currents in the Ocean Induced by the Geomagnetic Sq Field and Their Effect on the Estimation of Mantle Conductivity’,Geophys. J. Int. 104, 381–385.

    Google Scholar 

  • Tanimoto, T.: 1990, ‘Long-Wavelength S-Wave Velocity Structure Throughout the Mantle’,Geophys. J. Int. 100, 327–336.

    Google Scholar 

  • Tarits, P. and Wahr, J.: 1992, ‘Electrical Conductivity Heterogeneities in the Mantle: Correlation with Mantle Velocity Structure’,AGU, San Francisco,abstract.

  • Wahr, J., Tarits, P. and Lognonń, P.: 1992, ‘Lateral Variations in D″ Electrical Conductivity: Possible Effects on the Secular Variation of the Nagnetic Field’,AGU, San Francisco,abstract.

  • Winch, D. E.: 1989, ‘Induction in a Model Ocean’,Phys. Earth Planet. Int. 53, 328–336.

    Google Scholar 

  • Zhang, T. S. and Schultz, A.: 1992, ‘A Three-Dimensional Perturbation Solution for the EM Induction Problem in a Spherical Earth - The Forward Problem’,Geophys. J. Int. 111, 319–334.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarits, P. Electromagnetic studies of global geodynamic processes. Surv Geophys 15, 209–238 (1994). https://doi.org/10.1007/BF00689860

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689860

Keywords

Navigation