Skip to main content
Log in

Riemann curvature scalar of spacetime tangent bundle

  • Published:
Foundations of Physics Letters

Abstract

The maximum possible proper acceleration relative to the vacuum determines much of the differential geometric structure of the space-time tangent bundle. By working in an anholonomic basis adapted to the spacetime affine connection, one derives a useful expression for the Riemann curvature scalar of the bundle manifold. The explicit documentation of the proof is important because of the central role of the curvature scalar in the formulation of an action with resulting field equations and associated solutions to physical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Sakai, “Hawking radiation in string theories,” inParticles and Nuclei, H. Terezawa, ed. (World Scientific, Singapore, 1986), p. 286.

    Google Scholar 

  2. R. Parentani and R. Potting, “Accelerating observer and the Hagedorn temperature,”Phys. Rev. Lett. 63, 945 (1989).

    Google Scholar 

  3. M. J. Bowick and S. B. Giddings, “High-temperature strings,”Nucl. Phys. B325, 631 (1989).

    Google Scholar 

  4. H. E. Brandt, “Structure of spacetime tangent bundle,”Found. Phys. Lett. 4, 523 (1991).

    Google Scholar 

  5. H. E. Brandt, “Maximal proper acceleration relative to the vacuum,”Lett. Nuovo Cimento 38, 522 (1983);39, 192 (1984).

    Google Scholar 

  6. H. E. Brandt, “Maximal proper acceleration and the structure of spacetime,”Found. Phys. Lett. 2, 39, 405 (1989).

    Google Scholar 

  7. E. R. Caianiello, “Is there a maximal acceleration?,”Lett. Nuovo Cimento 32, 65 (1981).

    Google Scholar 

  8. E. R. Caianiello, S. De Filippo, G. Marmo, and G. Vilasi, “Remarks on the maximal-acceleration hypothesis,”Lett. Nuovo Cimento 34, 112 (1982).

    Google Scholar 

  9. G. Scarpetta, “Relativistic kinematics with Caianiello's maximal proper acceleration,”Lett. Nuovo Cimento 41, 51 (1984).

    Google Scholar 

  10. H. E. Brandt, “Differential geometry and gauge structure of maximal-acceleration invariant phase space,” inProceedings, XVth International Colloquium on Group Theoretical Methods in Physics, R. Gilmore, ed. (World Scientific, Singapore, 1987), p. 569.

    Google Scholar 

  11. H. E. Brandt, “Kinetic theory in maximal-acceleration invariant phase space,”Nucl. Phys. B, Proc. Suppl. 6, 367 (1989).

    Google Scholar 

  12. H. E. Brandt, “Connections and geodesics in the spacetime tangent bundle,”Found. Phys. 21, 1285 (1991).

    Google Scholar 

  13. H. E. Brandt, “Differential geometry of spacetime tangent bundle,”Internat. J. Theor. Phys. 31, 575 (1992).

    Google Scholar 

  14. K. Yano and S. Ishihara,Tangent and Cotangent Bundles (Marcel Dekker, New York, 1973).

    Google Scholar 

  15. C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  16. K. Yano and E. T. Davies, “On the tangent bundles of Finsler and Riemannian manifolds,”Rend. Circ. Mat. Palermo 12, 211 (1963).

    Google Scholar 

  17. E. Cartan,Les Espaces de Finsler (Hermann, Paris, 1934).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, H.E. Riemann curvature scalar of spacetime tangent bundle. Found Phys Lett 5, 43–55 (1992). https://doi.org/10.1007/BF00689795

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689795

Key words

Navigation