Skip to main content
Log in

Action of “pure” antiestrogens in inhibiting estrogen receptor action

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

The mechanism of action of the pure antiestrogens ICI 164384 and ICI 182780 has been investigated. Both antagonists are steroidal antiestrogens with 7α-alkylamide side-chains. The antiestrogens reduce the cellular content of the estrogen receptor by reducing the half-life of the protein. A potential mechanism for this effect is suggested by the observation that the DNA binding activity of receptors which have been over-expressed in cells was inhibitedin vitro. The inhibitory activity of analogues of ICI 164384 with different side chain lengths correlates with their ability to function as pure antiestrogensin vivo. Since the estrogen binding site overlaps with residues involved in dimerisation, the antiestrogens are likely to bind to a similar site and may therefore interfere with receptor dimerisation in the hormone binding domain by means of the 7α side-chain. We propose that the increased turnover of the receptor in the presence of ICI 164384 and ICI 182380 is a consequence of impaired dimerisation of the proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowler J, Lilley TJ, Pittam JD, Wakeling AE: Novel steroidal pure antiestrogens. Steroids 54:71–99, 1989

    Google Scholar 

  2. Wakeling AE, Bowler J: Biology and mode of action of pure antioestrogens. J Steroid Biochem 30:141–148, 1988

    Google Scholar 

  3. Wakeling AE, Dukes M, Bowler J: A potent specific pure antiestrogen with clinical potential. Cancer Res 51:3867–3873, 1991

    Google Scholar 

  4. Evans RM: The steroid and thyroid hormone receptor superfamily. Science 240:889–895, 1988

    Google Scholar 

  5. Beato M: Gene regulation by steroid hormones. Cell 56:335–344, 1989

    Google Scholar 

  6. Green S, Chambon P: Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 4:309–314, 1988

    Google Scholar 

  7. Gronemeyer H: Transcription activation by estrogen and progesterone receptors. Annu Rev Genet 25: 89–123, 1991

    Google Scholar 

  8. Parker MG: Steroid and related receptors. Current Opinion in Cell Biology 5:499–504, 1993

    Google Scholar 

  9. Greene GL, Sobel NB, King WJ, Jensen EV: Immunochemical studies of estrogen receptors. J Steroid Biochem 20:51–56, 1984

    Google Scholar 

  10. Catelli MG, Binart N, Jung TI, Renoir JM, Baulieu EE, Feramisco JR, Welch WJ: The common 90-kd protein component of non-transformed ‘8S’ steroid receptors is a heat-shock protein. EMBO J 4:3131–3135, 1985

    Google Scholar 

  11. Lesbeau M-C, Massol N, Herrick J, Faber LE, Renoir J-M, Radanyi C, Baulieu E-E: P59, an hsp90-binding protein. J Biol Chem 267:4281–4284, 1992

    Google Scholar 

  12. Kumar V, Chambon P: The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55:145–156, 1988

    Google Scholar 

  13. Kumar V, Green S, Stack G, Berry M, Jin JR, Chambon P: Functional domains of the human estrogen receptor. Cell 51:941–951, 1987

    Google Scholar 

  14. Lees JA, Fawell SE, Parker MG: Identification of two transactivation domains in the mouse oestrogen receptor. Nucleic Acids Res 17:5477–5488, 1989

    Google Scholar 

  15. Tora L, White J, Brou C, Tasset D, Webster N, Scheer E, Chambon P: The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59:477–487, 1989

    Google Scholar 

  16. Webster NJG, Green S, Jin JR, Chambon P: The hormone-binding domains of the estrogen and glucocorticoid receptors contain an inducible transcription activation function. Cell 54:199–207, 1988

    Google Scholar 

  17. Mitchell PJ, Tjian R: Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378, 1989

    Google Scholar 

  18. Tsai SY, Tsai M-J, O'Malley BW: The steroid receptor superfamily: transactivators of gene expression.In: Parker MG (ed) Nuclear Hormone Receptors. Molecular Mechanisms, Cellular Functions, Clinical Abnormalities. Academic Press, London, 1991, pp 103–124

    Google Scholar 

  19. Fawell SE, Lees JA, White R, Parker MG: Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60:953–962, 1990

    Google Scholar 

  20. Danielian PS, White R, Lees JA, Parker MG: Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J 11:1025–1033, 1992

    Google Scholar 

  21. Harlow KW, Smith DN, Katzenellenbogen JA, Green GL, Katzenellenbogen BS: Identification of cysteine 530 as the covalent attachment site of an affinitylabelling estrogen (ketononestrol aziridine) and antiestrogen (tamoxifen aziridine) in the human estrogen receptor. J Biol Chem 164:17476–17485, 1989

    Google Scholar 

  22. Danielian PS, White R, Hoare SA, Fawell SE, Parker MG: Identification of residues in the estrogen receptor which confer differential sensitivity to estrogen and hydroxytamoxifen. Mol Endocrinol 7:232–240, 1993

    Google Scholar 

  23. Pakdel F, Katzenellenbogen BS: Human estrogen receptor mutants with altered estrogen and antiestrogen ligand discrimination. J Biol Chem 267:3429–3437, 1992

    Google Scholar 

  24. Arbuckle ND, Dauvois S, Parker MG: Effects of antioestrogens on the DNA binding activity of oestrogen receptors in vitro. Nucleic Acids Res 20:3839–3844, 1992

    Google Scholar 

  25. Fawell SE, White R, Hoare S, Sydenham M, Page M, Parker MG: Inhibition of estrogen receptor-DNA binding by the ‘pure’ antiestrogen ICI 164,384 appears to be mediated by impaired receptor dimerization. Proc Natl Acad Sci USA 87:6883–6887, 1990

    Google Scholar 

  26. Sabbah M, Gouilleux F, Sola B, Redeuilh G, Baulieu EE: Structural differences between the hormone and antihormone estrogen receptor complexes bound to the hormone response element. Proc Natl Acad Sci USA 88:390–394, 1991

    Google Scholar 

  27. Martinez E, Wahli W: Cooperative binding of estrogen receptor to imperfect estrogen-responsive DNA elements correlates with their synergistic hormonedependent enhancer activity. EMBO J 8:3781–3791, 1989

    Google Scholar 

  28. Pham TA, Elliston JF, Nawaz Z, McDonnell DP, Tsai MJ, O'Malley BW: Antiestrogen can establish nonproductive receptor complexes and alter chromatin structure at target enhancers. Proc Natl Acad Sci USA 88:3125–3129, 1991

    Google Scholar 

  29. Dauvois S, Danielian PS, White R, Parker MG: Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc Natl Acad Sci USA 89:4037–4041, 1992

    Google Scholar 

  30. Gibson MK, Nemmers LA, Beckman Jr WC, Davis VL, Curtis SW, Korach KS: The mechanism of ICI 164,384 antiestrogenicity involves rapid loss of estrogen receptor in uterine tissue. Endocrinology 129:2000–2010, 1991

    Google Scholar 

  31. Guiochon-Mantel A, Lescop P, Christin-Maitre S, Loosfelt H, Perrot-Applanat M, Milgrom E: Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J 10:3851–3859, 1991

    Google Scholar 

  32. Ylikomi T, Bocquel MT, Berry M, Gronemeyer H, Chambon P: Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J 11:1–14, 1992

    Google Scholar 

  33. Pasqualini JR, Giambiagi N, Gelly C, Chetrite G: Antiestrogen action in mammary cancer and in fetal cells. J Steroid Biochem Molec Biol 37:343–348, 1990

    Google Scholar 

  34. Jamil A, Croxtall JD, White JO: The effect of antioestrogens on cell growth and progesterone receptor concentration in human endometrial cancer cells (Ishikawa). J Mol Endocrinol 6:215–221, 1991

    Google Scholar 

  35. Shemshedini L, Knauthe R, Sassone-Corsi P, Pornon A, Gronemeyer H: Cell-specific inhibitory and stimulatory effects of Fos and Jun on transcription activation by nuclear receptors. EMBO J 10:3839–3849, 1991

    Google Scholar 

  36. Yang-Yen H-F, Chambard J-C, Sun Y-L, Smeal T, Schmidt TJ, Drouin J, Karin M: Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct proteinprotein interaction. Cell 62:1205–1215, 1990

    Google Scholar 

  37. Jonat C, Rahmsdorf HJ, Park KK, Cato ACB, Gebel S, Ponta H, Herrlich P: Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62:1189–1204, 1990

    Google Scholar 

  38. Schüle R, Rangarajan P, Kliewer S, Ransone LJ, Bolado J, Yang N, Verma IM, Evans RM: Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 62:1217–1226, 1990

    Google Scholar 

  39. Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR: Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 249:1266–1272, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, M.G. Action of “pure” antiestrogens in inhibiting estrogen receptor action. Breast Cancer Res Tr 26, 131–137 (1993). https://doi.org/10.1007/BF00689686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689686

Key words

Navigation