Skip to main content
Log in

Correlations of the craze profile in PMMA with Dugdale's plastic zone profile

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The craze opening profile in PMMA has been determined as a function of stress intensity using interference optics and a special wedge loading device. An attempt was made to correlate the craze profile with the corresponding parameters (crack opening displacement and plastic zone length) predicted by the Dugdale model. Over the mid-range of stress intensities (K I=0.4 to 1.0 MPa m1/2), samples which were annealed after precracking were found to exhibit a profile similar in shape but smaller than that predicted by the Dugdale model. The lower limit of this range marks the critical stress intensity for crazing in PMMA. Both the craze length and the opening at the craze-crack interface increase with increasing stress intensity and, due to strain-hardening of the craze material, reach maximum values of about 40μm and 3μm respectively atK I=1.0 MPa m1/2. Experimental uncertainties cannot account for the profile difference and it is therefore concluded that the Dugdale model is not fully adequate to describe craze geometries in PMMA. The discrepency between the Dugdale model and the experimental data is suggested to be due to either fibril strain-hardening and/or the formation of a plane strain plastic zone ahead of the craze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Dugdale,Mech. Phys. Solids 8 (1960) 100.

    Google Scholar 

  2. G. W. Weidmann andW. Doll, Abstracts from Third International Conference on Deformation, Yield and Fracture of Polymers (1976).

  3. H. R. Brown andI. M. Ward,Polymer 14 (1973) 469.

    Google Scholar 

  4. N. J. Mills andN. Walker,ibid 17 (1976) 335.

    Google Scholar 

  5. G. P. Morgan andI. M. Ward,ibid 18 (1977) 87.

    Google Scholar 

  6. B. Cotterell,Int. J. Fract. Mech. 4 (1968) 209.

    Google Scholar 

  7. R. P. Kambour,J. Polymer Sci. A-2 4 (1976) 349.

    Google Scholar 

  8. J. R. Rice, Proceedings of the First International Conference on Fracture (Sendai), Vol. 1 (Japanese Society for Strength and Fracture of Materials, Tokyo, 1966) 283.

    Google Scholar 

  9. J. N. Goodier andF. A. Field, “Fracture in Solids”, edited by D. C. Drucker and J. J. Gilman (Interscience, New York, 1963).

    Google Scholar 

  10. Plexiglass G. Product Literature, Rohm and Haas Company, Philadelphia, PA.

  11. B. D. Lauterwasser andE. J. Kramer, MSC Report #3076, Cornell University (1978).

  12. E. J. Kramer, “Developments in Polymer Fracture”, edited by E. H. Andrews (Applied Sciences, London, 1979).

    Google Scholar 

  13. M. J. Doyle,J. Mater. Sci. 8 (1973) 1185.

    Google Scholar 

  14. G. R. Irwin andJ. A. Kies,Welding J. Res. Suppl. 33 (1954) 1935.

    Google Scholar 

  15. M. F. Kanninen,Int. J. Fract. 9 (1973) 83.

    Google Scholar 

  16. P. Paris andG. Sih, in “Frature Toughness Testing and Its Applications”, ASTM STP 381, Philadelphia (1965).

  17. R. E. Robertson,J. Adhesion 7 (1975) 121.

    Google Scholar 

  18. H. Tada, P. Paris andG. Irwin, “The Stress Analysis of Cracks Handbook” (Del Research Corporation, Hellertown, Penn, 1973).

    Google Scholar 

  19. J. R. Rice, in “Fracture”, edited by H. Leibowitz (Academic Press, New York, 1968).

    Google Scholar 

  20. C. O. Harris, “Introduction to Stress Analysis” (MacMillan, New York, 1959).

    Google Scholar 

  21. O. K. Spurr Jr. andW. D. Neigisch,J. Appl. Polymer Sci. 6 (1962) 585.

    Google Scholar 

  22. R. D. Kambour andR. W. Kopp,J. Polymer Sci. A-2 7 (1969) 183.

    Google Scholar 

  23. J. C. Newman Jr.,Eng. Fract. Mech. 1 (1963) 137.

    Google Scholar 

  24. G. T. Hahn andA. R. Rosenfield,Acta Met. 13 (1965) 293.

    Google Scholar 

  25. R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials” (Wiley, New York, 1976).

    Google Scholar 

  26. J. C. Bauwens,J. Polymer Sci. A-2 5 (1967) 1145.

    Google Scholar 

  27. S. S. Sternstein, L. Ongchin andA. Silverman,Appl. Polymer Symp. 7 (1969) 175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Israel, S.J., Thomas, E.L. & Gerberich, W.W. Correlations of the craze profile in PMMA with Dugdale's plastic zone profile. J Mater Sci 14, 2128–2138 (1979). https://doi.org/10.1007/BF00688417

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00688417

Keywords

Navigation