Skip to main content
Log in

Isozyme specificity of novel glutathione-S-transferase inhibitors

  • Original Articles
  • Gluthatione-S-Transferase, Isozyme Selectivity, Paralog Inhibition
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

A systematically diversified set of peptide analogs of the reaction product of glutathione with an electrophilic substrate have been tested as isozyme-specific inhibitors of human glutathione-S-transferase (GST). The potency of the best of the inhibitors is in the 0.5 to 20 micromolar range, with kinetics indicative of competitive inhibition with glutathione at the active site. The specificity observed among three recombinant-derived GST isozymes at both low and high potency ranged from negligible to high (at least 20-fold over the next most sensitive isozyme). These results define a novel strategy for the design of drugs targeting cells with elevated levels of particular GST isozymes, such as tumor cells for which elevated levels of GST are believed to be an important cause of chemotherapeutic drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GSH:

glutathione

GST:

glutathione-S-transferase

CDNB:

1-chloro-2,4-dinitrobenzene

phegly:

S(+)phenylglycine

β-ala:

3-aminopropionic acid

4-ABu:

4-aminobutyric acid

QSAR:

quantitative structure/activity relationship

IC50 :

concentration required for 50% inhibition

References

  1. Adang AEP, Meyer D, Brussee J, Gen A van der, Ketterer B, Mulder GJ (1989) Interaction of rat glutathione-S-transferases 7-7 and 8-8 with γ-glutamyl-or glycyl-modified glutathione analogs. Biochem J 264: 759–764

    Google Scholar 

  2. Adang AEP, Brussee J, Gen A van der, Mulder GJ (1990) The glutathione-binding site in glutathione-S-transferases. Biochem J 269: 47–54

    Google Scholar 

  3. Arrick BA, Nathan CF (1984) Glutathione metabolism as a determinant of therapeutic efficacy: a review. Cancer Res 44: 4224–4232

    Google Scholar 

  4. Benedek K, Várkonyi A, Hughes B, Zabel K, Kauvar LM (1992) Paralog chromatography: sorbent families for protein separations. J Chromatogr 627: 51–61

    Google Scholar 

  5. Castro VM, Söderström M, Carlberg I, Widersten M, Platz A, Mannervik B (1990) Differences among human tumor cell lines in the expression of glutathione transferases and other glutathione-linked enzymes. Carcinogenesis 11: 1569–1576

    Google Scholar 

  6. Castro VM, Kelley MK, Engqvist-Goldstin Å, Kauvar LM (1993) Glutathione analog sorbents selectively bind glutathione-S-transferases isozymes. Biochem J 292: 371–377

    Google Scholar 

  7. Chasseaud IF (1979) The role of glutathione and glutathione-S-transferases in the metabolism of chemical carcinogens and other electrophilic agents. Adv Cancer Res 29: 175–274

    Google Scholar 

  8. Cheung PYK, Kauvar LM, Engqvist-Goldstein AE, Ambler SM, Karu AE, Ramos LS (1993) Harnessing immunochemical cross-reactivity: use of pattern recognition to classify molecular analogs. Anal Chim Acta (in press)

  9. Clapper ML, Hoffman SJ, Tew KD (1990) Sensitization of human colon tumor xenografts toL-phenylalanine mustard using ethacrynic acid. J Cell Pharmacol 1: 71–78

    Google Scholar 

  10. Cole SPC, Downes HF, Mirski SEL, Clements DJ (1990) Alterations in glutathione and glutathione-related enzymes in a multi-drug resistant small cell lung cancer cell line. Med Pharmacol 37: 192–197

    Google Scholar 

  11. Coles B, Ketterer B (1990) The role of glutathione and glutathione transferases in chemical carcinogenesis. CRC Crit Rev Biochem 25: 47–70

    Google Scholar 

  12. Fodor SPA, Read JL, Pirrung MC, Stryer, L, Lu AT, Solas D (1991) Light-directed, spatially adressable parallel chemical synthesis. Science 251: 767–773

    Google Scholar 

  13. Ford JM, Hait WN, Matlin SA, Benz CC (1991) Modulation of resistance to alkylating agents in cancer cells by gossypol enantiomers. Cancer Lett 56: 85–94

    Google Scholar 

  14. Geysen HM, Meleon RH, Barteling SJ (1984) Use of a peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci USA 81: 3998–4002

    Google Scholar 

  15. Hall A, Robson CN, Hickson ID, Harris AL, Proctor SJ, Cattan AR (1989) Possible role of inhibition of glutathione-S-transferase in the partial reversal of chlroambucil resistance by indomethacin in a Chinese hamster ovary cell line. Cancer Res 49: 6265–6268

    Google Scholar 

  16. Hansch C, Klein TE (1986) Molecular graphics and QSAR in the study of enzyme ligand interactions. Acc Chem Res 19: 392–400

    Google Scholar 

  17. Hansson J, Berhame K, Castro VM, Jungelius U, Mannervik B, Ringborg U (1991) Sensitization of human melanoma cells to the cytotoxic effect of melphalan by the glutathione transferase inhibitor ethacrynic acid. Cancer Res 51: 94–98

    Google Scholar 

  18. Hayes PC, Bouchier IAD, Beckett GJ (1991) Glutathione-S-transferase in humans in health and disease. Gut 32: 813–818

    Google Scholar 

  19. Houghten RA, Appel JR, Blondelle SE, Cuervo JH, Dooley CT, Pinilla C (1992) The use of synthetic peptide combinatorial libraries for the identification of bioactive peptides. BioTechniques 13: 412–421

    Google Scholar 

  20. Howie AF, Forrester LM, Glancey MJ, Schlager JJ, Powis G, Beckett GJ, Hayes JD, Wolf CR (1990) Glutathione-S-transferase and glutathione peroxidase expression in normal and tumor human tissues. Carcinogenesis 11: 451–455

    Google Scholar 

  21. Kauvar LM (1992) Method to identify analyte-binding peptides. Patent 5, 133, 866, United States Patent Office, Washington, D. C.

    Google Scholar 

  22. Kramer RA, Zakher J, Kim G (1988) Role of the glutathione redox cycle in acquired and de novo multidrug resistance Science 241: 694–697

    Google Scholar 

  23. Larson A (ed) (1986) Functions of glutathione: biochemical, physiological, toxocological, and clinical aspects, Raven, New York

    Google Scholar 

  24. Lyttle MT, Aaron D, Hocker MD, Hughes BR (1992) Construction of affinity sorbents utilizing glutathione analogs. Peptide Res 5: 336–342

    Google Scholar 

  25. Mannervik B, Danielson UH (1988) Glutathione — structure and catalytic activity. CRC Crit Rev Biochem 23: 283–337

    Google Scholar 

  26. Mannervik B, Guthenberg C (1981) Glutathione transferase (human placenta). Methods Enzymol 77: 231–235

    Google Scholar 

  27. Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Warholm M, Jornvall H (1985) Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci USA 82: 7202–7206

    Google Scholar 

  28. Mannervik B, Castro VM, Danielson UH, Tahir MK, Hansson J, Ringborg U (1987) Expression of class pi glutathione transferase in human malignant melanoma cells. Carcinogenesis 8: 1929–1932

    Google Scholar 

  29. Mannervik B, Awash YC, Board PG, Hayes JD, Di Illio C, Ketterer B, Listowsky I, Morgenstern R, Muramatsu M, Pearson WR, Pickett CB, Sato K, Widersten M, Wolf CR (1992) Nomenclature for human glutathione transferases. Biochem J 282: 305–308

    Google Scholar 

  30. Manoharan TH, Gulick AM, Reinemer P, Dirr HW, Huber R, Fahl WE (1992) Mutational substitution of residues implicated by crystal structure in binding the substrate glutathione to human glutathione S-transferase pi. J Mol Biol 226: 319–322

    Google Scholar 

  31. Mantle TJ, Pickett CB, Hayes JD (eds) (1987) Glutathione-S-transferase and carcinogenesis. Taylor and Frances, London

    Google Scholar 

  32. Massart DL, Vandeginste BGM, Deming SN, Michotte Y, Kaufman L (1988) Chemometrics: a textbook. Elsevier, Amsterdam

    Google Scholar 

  33. Moscow JA, Fairchild CR, Madden MI, Ransom DT, Weand HS, O'Brien EE, Poplack DG, Cossman J, Meyers CE, Cowan KH (1989) Expression of anionic glutathione-S-transferase and P-glycoprotein genes in human tissues and tumors. Cancer Res 1422–1428

  34. O'Dwyer PJ, La Creta F, Nash S, Tinsley PW, Schilder R, Clapper ML, Tew KD, Panting L Litwin S, Comis RL (1991) Phase I study of thiotepa in combination with the glutathione transferase inhibitor ethacrynic acid. Cancer Res 51: 6059–6065

    Google Scholar 

  35. Penington CJ, Rule GS (1992) Mapping the substrate-binding site of a human class mu glutathione transferase using nuclear magnetic resonance spectroscopy. Biochemistry 31: 2912–2920

    Google Scholar 

  36. Pickett CB, Lu AYH (1989) Glutathione-S-transferase: structure and enzymatic activity. Annu Rev Biochem 58: 694–697

    Google Scholar 

  37. Puchalski RB, Fahl WE (1990) Expression of recombinant glutathione-S-transferase π, Ya or Yb confers resistance to alkylating agents. Proc Natl Acad Sci USA 87: 2443–2447

    Google Scholar 

  38. Reinemer P, Dirr HW, Ladenstein R, Huber R, Lo Bello M, Federici G, Parker MW (1992) Three-dimensional structure of class pi glutathione-S-transferase from human placenta in complex with S-hexylglutathione at 2.8 A resolution. J Mol Biol 227: 214–226

    Google Scholar 

  39. Ross D (1988) Glutathione, free-radicals, and chemotherapeutic agents: mechanisms of free-radical induced toxicity and glutathione-dependent protection. Pharmacol Ther 37: 231–249

    Google Scholar 

  40. Segel IH (1976) Enzymes in biochemical calculations. John Wiley & Sons, New York, pp 204–323

    Google Scholar 

  41. Seidegard J, Pero RW, Martowitz MM (1990) Isoenzymes of glutathione-S-transferase (class mu) as a marker for the susceptibility to lung cancer: a follow-up study. Carcinogenesis 11: 33–36

    Google Scholar 

  42. Smith MT, Evans C, Doane-Setzer P, Castro VM, Tahir MK, Mannervik B (1989) Denitrosation of 1,3-bis(2-chloroethyl)-1-nitrosourea by class mu glutathione transferases and its role in cellular resistance in rat brain tumor cells. Cancer Res 49: 2621–2625

    Google Scholar 

  43. Tew KD, Bomber AM, Hoffman JJ (eds) (1988) Ethacrynic acid and piriprost as enhancers of cytotoxicity in drug-resistant and-sensitive cell lines. Cancer Res 48: 3622–3625

    Google Scholar 

  44. Tew KD, Schisselbauer JC, Clapper ML, Kuzmich S (1990) Glutathione-S-transferases and resistance to alkylating agents. In: Hayes JD, Pickett CB, Mantle TJ (eds) Glutathione-S-transferase and drug resistance. Taylor and Francis, London, pp 309–317

    Google Scholar 

  45. Vorachek WR, Pearson WR, Rule GS (1991) Cloning, expression and characterization of a class-mu glutathione transferase from human muscle, the product of the GST 4 locus. Proc Natl Acad Sci USA 88: 4443–4447

    Google Scholar 

  46. Wellner VP, Anderson ME, Puir RN, Jensen GL, Meister A (1984) Radioprotection by glutathione ester: transport of glutathione ester into human lymphoid cells and fibroblasts. Proc Natl Acad Sci USA 81: 4732–4735

    Google Scholar 

  47. Xinhua J, Zhang P, Armstrong RN, Gilliland GL (1992) The three-dimensional structure of a glutathione-S-transferase from the mu class. Biochemistry 31: 10169–10184

    Google Scholar 

  48. Zhang P, Suxing L, Shan S, Xinhua J, Gilliland GL, Armstrong RN (1992) Modular mutagenesis of exons 1, 2, and 8 of a glutathione-S-transferase from the mu class. Biochemistry 31: 10185–10193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flatgaard, J.E., Bauer, K.E. & Kauvar, L.M. Isozyme specificity of novel glutathione-S-transferase inhibitors. Cancer Chemother. Pharmacol. 33, 63–70 (1993). https://doi.org/10.1007/BF00686025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00686025

Keywords

Navigation