Skip to main content
Log in

Nanokelvin thermometry at temperatures near 2 K

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present a method of temperature measurement based on a liquid3He vapor pressure thermometer with a resolution of one part in 109 of the absolute temperature over the range from 1.6 to 2.2 K. The thermometer, as well as apparatus suitable for the assessment of the resolution and stability of the device, are described in detail. A method for the determination of a fixed point on the temperature scale with a resolution of 2×10−9 is presented. Two different procedures for monitoring the long-term stability of the thermometer are discussed. The present resolution and stability of the thermometer are an improvement by two orders of magnitude over conventional germanium resistance thermometry. Although this performance level is adequate for presently planned phase transition experiments using liquid4He, future improvements by yet another order of magnitude seem feasible and will bring the device within an order of magnitude of the thermal noise limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. G. Wilson,Phys. Rev. B 4, 3174, 3184 (1971).

    Google Scholar 

  2. K. G. Wilson and J. Kogut,Phys. Rep. C 12, 76 (1974).

    Google Scholar 

  3. M. E. Fisher,Rev. Mod. Phys. 46, 597 (1974).

    Google Scholar 

  4. G. Ahlers, inQuantum Liquids, J. Ruvalds and T. Regge, eds. (North-Holland, Amsterdam, 1978), p. 1;Rev. Mod. Phys. 52, 489 (1980).

    Google Scholar 

  5. J. E. Kunzler, T. H. Geballe, and G. W. Hull,Rev. Sci. Instrum. 28, 96 (1957).

    Google Scholar 

  6. D. S. Greywall and P. A. Busch,Rev. Sci. Instrum. 51, 509 (1980).

    Google Scholar 

  7. G. Ahlers,Phys. Rev. 171, 275 (1968).

    Google Scholar 

  8. G. Ahlers, inThe Physics of Liquid and Solid Helium, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1976), Chapter 2.

    Google Scholar 

  9. M. Barmatz and P. C. Hohenberg,Phys. Rev. A 6, 289 (1972).

    Google Scholar 

  10. J. V. Sengers and J. M. J. Van Leeuwen,Physica 116A, 345 (1982).

    Google Scholar 

  11. G. Ahlers,Phys. Rev. A 3, 696 (1971).

    Google Scholar 

  12. H. van Dijk, M. Durieux, J. R. Clement, and J. K. Logan, National Bureau of Standards (U.S.) Monograph No. 10 (U.S. Government Printing Office, Washington, D.C. 1960).

  13. J. A. Lipa, B. C. Leslie, and T. C. Wallstrom,Physica 107B, 331 (1981).

    Google Scholar 

  14. J. A. Lipa, A very high resolution thermometer for use below 10 K, preprint (November 1982).

  15. J. Clarke, G. I. Hoffer, P. L. Richards, and N. H. Yeh,J. Appl. Phys. 48, 4865 (1977).

    Google Scholar 

  16. M. Maul and M. Strandburg,J. Appl. Phys. 40, 2822 (1969).

    Google Scholar 

  17. H. Notarys, PhD. Dissertation, California Institute of Technology (1964).

  18. M. Crooks and B. Robinson,Rev. Sci. Instrum. 54, 12 (1983).

    Google Scholar 

  19. H. W. Ott, inNoise Reduction Techniques in Electronic Systems (Wiley, New York, 1976).

    Google Scholar 

  20. K. H. Mueller, G. Ahlers, and F. Pobell,Phys. Rev. B. 14, 2096 (1976).

    Google Scholar 

  21. L. D. DeLong, O. G. Symko, and J. G. Wheatley,Rev. Sci. Instrum. 42, 147 (1971).

    Google Scholar 

  22. G. C. Straty and E. G. Adams,Rev. Sci. Instrum. 40, 1393 (1969).

    Google Scholar 

  23. G. Ahlers,Phys. Rev. Lett. 43, 1417 (1979).

    Google Scholar 

  24. V. Steinberg and G. Ahlers, to be published.

  25. G. Ahlers,Phys. Rev. Lett. 21, 1159 (1968).

    Google Scholar 

  26. D. S. Greywall and G. Ahlers,Phys. Rev. A 7, 2145 (1973).

    Google Scholar 

  27. G. Ahlers, inPhase Transitions: Cargese 1980, M. Levy, J.-C. LeGuillou, and J. Zinn-Justin, eds. (Plenum, New York, 1982), p. 1.

    Google Scholar 

  28. G. Ahlers, P. C. Hohenberg, and A. Kornblit,Phys. Rev. B 25, 3136 (1982), and references therein.

    Google Scholar 

  29. E. J. Hearn, inMechanics of Materials (Pergamon, Oxford, 1977).

    Google Scholar 

  30. V. Zentner, A. Brenner, and C. W. Jennings, inPhysical Properties of Electrodeposited Metals. I: Nickel (American Electroplaters Society, Newark, New Jersey).

  31. W. H. Safranek, inThe Properties of Electrodeposited Copper (Copper Development Association, New York).

  32. Kawecki Berylco Industries, Technical Data, Metals and Alloys, Beryllium Copper, Be-Cu alloy 25 CA172.

  33. J. F. Kerrisk and W. E. KellerPhys. Rev. 177, 341 (1969).

    Google Scholar 

  34. D. S. Greywall,Phys. Rev. A, in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by NSF Grant DMR 79-23289.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinberg, V., Ahlers, G. Nanokelvin thermometry at temperatures near 2 K. J Low Temp Phys 53, 255–283 (1983). https://doi.org/10.1007/BF00685782

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00685782

Keywords

Navigation