Skip to main content
Log in

Hydrostatic pressure tests for the permeability - formation factor relation on crystalline rocks from the KTB drilling project

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Transport properties (permeability and electrical conductivity) have been measured at different hydrostatic pressure runs on 7 crystalline rocks (gneisses and amphibolites) sampled from the KTB drilling project. The decrease of permeability by pressure are compared with the pressure-dependent data of the electrical conductivity (formation factor) resulting from complex impedance measurements. According to the equivalent-channel model (ECM), there exists a linear relationship between these parameters by representing both properties on logarithmic scales. The results show that it is possible to extrapolate high-pressure permeability from low-pressure (< 60 MPa) permeability data by using the pressure-dependent electrical conductivity (up to 300 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banavar, J. R. and Schwartz, L. M.: 1987, ‘Magnetic Resonance as a Probe of Permeability in Porous Media’,Phys. Rev. Lett. 58(14), 1411–1414.

    Google Scholar 

  • Bernabé, Y.: 1986, ‘Pore Volume and Transport Properties Changes During Pressure Cycling of Several Crystalline Rocks’,Mechanics of Materials 5, 235–249.

    Google Scholar 

  • Bernabé, Y.: 1987, ‘A Wide Range Permeameter for Use in Rock Physics’,Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 24(5), 309–315.

    Google Scholar 

  • Bernabé, Y.: 1988, ‘Comparison of the Effective Pressure Law for Permeability and Resistivity Formation Factor in Chelmsford Granit’,PAGEOPH 127, 607–625.

    Google Scholar 

  • Bernabé, Y.: 1991, ‘Pore Geometry and Pressure Dependence of Transport Properties in Sandstones’,Geophysics 56, 436–446.

    Google Scholar 

  • Börner, F.: 1991,Untersuchungen zur komplexen elektrischen Leitfähigkeit von Gesteinen im Frequenzbereich von 1 Millihertz bis 10 Kilohertz Ph.D. thesis, Bergakademie Freiberg, Germany, 127 pp.

    Google Scholar 

  • Brace, W. F.: 1980, ‘Permeability of Crystalline and Argillaceous Rocks’,Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 17, 241–251.

    Google Scholar 

  • Brace, W. F., Walsh, J. B. and Frangos, W. T.: 1968, ‘Permeability of Granite Under High Pressure’,J. Geophys. Res. 73, 2225–2236.

    Google Scholar 

  • Bremer, M., Kulenkampff, J. and Schopper, J. R.: 1992, ‘An Attempt of Deterministic Interpretation of KTB-Oberpfalz-VB Standard Logs’,Scient. Drill. 3, 6–15.

    Google Scholar 

  • Clauser, C.: 1992, ‘Permeability of Crystalline Rocks’,EOS 73, 233.

    Google Scholar 

  • David, C.: 1991,La Perméabilité et la Conductivité Électriques des Roches dans la Croûte: Expériences en Laboratoire et Modèles Théoriques, Ph.D. thesis, Univ. Strasbourg, France.

    Google Scholar 

  • David, C. and Darot, M.: 1989, ‘Permeability and conductivity of sandstones’, in Maury, V., Fourmaintraux, D. and Maury, V. (eds.),Proc. Symp. “Rock at Great Depth”, Rotterdam, The Netherlands, pp. 203–209.

    Google Scholar 

  • David, C., Gueguen, Y. and Pampoukis, G.: 1990, ‘Effective Medium Theory and Network Theory Applied to the Transport Properties of Rock’,J. Geophys. Res. 95(B5), 6993–7005.

    Google Scholar 

  • Doussal, P.: 1989, ‘Permeability Versus Conductivity for Porous Media with Wide Distribution of Pore Sizes’,Phys. Rev. B 39(7), 4813–4819.

    Google Scholar 

  • Doyen, P. M.: 1988, ‘Permeability, Conductivity, and Pore Geometry of Sandstone’,J. Geophys. Res. 93(B7), 7729–7740.

    Google Scholar 

  • Duba, A., Piwinskii, A. J., Santor, M. and Weed, H. C.: 1978, ‘The Electrical Conductivity of Sandstone, Limestone, and Granite’,Geophys. J. R. Astr. Soc. 53, 583–597.

    Google Scholar 

  • Freund, D.: 1990,Indirekte Messung der Permeabilität geringporöser Sedimente unter Druck Report FHD, Potsdam 1990, 51 pp.

    Google Scholar 

  • Goode, P. A. and Sen, P. N.: 1988, ‘Charge Density and Permeability in Clay-Bearing Sandstones’,Geophysics 53, 1610–1612.

    Google Scholar 

  • Gueguen, Y., and Dienes, J.: 1989, ‘Transport Properties of Rocks from Statistics and Percolation’,Mathem. Geol. 21(1), 1–13.

    Google Scholar 

  • Huenges, E.: 1987,Messung der Permeabilität von niedrigpermeablen Gesteinsproben unter Drücken bis 4 kbar und ihre Beziehung zu Kompressibilität, Porosität und komplexen elektrischem Widerstand Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany.

    Google Scholar 

  • Johnson, D. L., Koplik, J. and Schwartz, L. M.: 1986, ‘New Pore-Size Parameter Characterizing Transport in Porous Media’,Phys. Rev. Lett. 57, 2564–2567.

    Google Scholar 

  • Johnson, D. L. and Sen, P. N.: 1988, ‘Dependence of the Conductivity of a Porous Medium on Electrolyte Conductivity’,Phys. Rev. B 33, 3502–3510.

    Google Scholar 

  • Katsube, T. J. and Hume, J. P.: 1987, ‘Permeability Determination in Crystalline Rocks by Standard Geophysical Logs’,Geophysics 52, 342–352.

    Google Scholar 

  • Katsube, T. J. and Mareschal, M.: 1993, ‘Petrophysical Model of Deep Electrical Conductors: Graphite Lining as a Source and Its Disconnection Due to Uplift’,J. Geophys. Res. 98(B5), 8019–8030.

    Google Scholar 

  • Katz, A. J. and Thompson, A. H.: 1986, ‘Quantitative Prediction of Permeability in Porous Rock,Phys. Rev. B 34, 8179–8181.

    Google Scholar 

  • Koplik, J., Lin, C. and Vermette. M.: 1984, ‘Conductivity and Permeability from Microgeometry’,J. Appl. Phys. 56, 3127–3131.

    Google Scholar 

  • Lin, W.: 1982, ‘Parametric Analysis of the Transient Method of Measuring Permeability’,J. Geophys. Res. 87, 1055–1060.

    Google Scholar 

  • Lin, W., Pirie, G. and Trimmer, D. A.: 1986, ‘Low Permeability Rocks: Laboratory Measurements and Threedimensional Microstructural Analysis’,J. Geophys. Res. 91(B2), 2173–2181.

    Google Scholar 

  • Lockner, D. A. and Byerlee, J. D.: 1985, ‘Complex Resistivity Measurements of Confined Rock’,J. Geophys. Res. 90, 7837–7847.

    Google Scholar 

  • Nover, G. and Will, G.: 1991, ‘Laboratory Measurements on KTB Core Samples: Complex Resistivity, Zeta Potential, Permeability, and Density as a Tool for Detection of Flow Phenomena’,Scient. Drill. 2, 90–100.

    Google Scholar 

  • Paterson, M. S.: 1983, ‘The Equivalent Channel Model for Permeability and Resistivity in Fluid-Saturated Rock - A Re-appraisal’,Mechanics of Materials 2, 345–352.

    Google Scholar 

  • Pape, H., Riepe, L. and Schopper, J. R.: 1981,Calculating Permeability from Surface Area Measurements, 7th Eur. Logg. Symp. Trans. Paris.

    Google Scholar 

  • Pape, H., Riepe, L. and Schopper, J. R.: 1982, ‘A Pigeon-Hole Model for Relating Permeability to Specific Surface’,Log Analyst 23, 5–13.

    Google Scholar 

  • Pape, H., Riepe, L. and Schopper, J. R.: 1985,Permeability from Porous Rocks Derived from Internal Surface, 47th EAEG-Meeting Budapest.

  • Pape, H., Riepe, L. and Schopper, J. R.: 1987, ‘Interlayer Conductivity of Rocks - A Fractal Model of Interface Irregularities for Calculating Interlayer Conductivity of Natural Porous Mineral Systems’,Colloids and Surfaces 27, 97–122.

    Google Scholar 

  • Pape, H. and Worthington, P. F.: 1983,A Surface-Structure Model for the Electrical Conductivity of Reservoir Rocks, 8th Europ. Formation Evaluation Symp. Trans, London, 19 pp.

    Google Scholar 

  • Pettijohn, F. J., Potter, P. E. and Siever, P.: 1972,Sand and Sandstone, Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Romm, E. S.: 1985,Strukturnyje Modeli Porovo Prostranstva Gornykh Porod (in Russian). Nedra, Leningrad, 240 pp.

    Google Scholar 

  • Ruffet, C., Gueguen, Y. and Darot, M.: 1991, ‘Complex Conductivity Measurements and Fractal Nature of Porosity’,Geophysics 56(6), 265–275.

    Google Scholar 

  • Ruffet, C.: 1993,La Conductivité Électrique Complexe dans Quelques Roches Crustales Ph.D. thesis. Universite Louis Pasteur, Strasbourg, France, 237 pp.

    Google Scholar 

  • Schopper, J. R.: 1966, ‘A Theoretical Investigation on the Formation Factor/Permeability/Porosity Relationship using a Network Model’,Geophys. Prospect. 14(3), 301–341.

    Google Scholar 

  • Schopper, J. R.: 1982, ‘Physical Properties of Rocks’, in Landoldt-Börnstein (ed.),New Series V/1, Subvolume b, Springer, Berlin-Heidelberg-New York, 276–291.

    Google Scholar 

  • Sen, P. N., Goode, P. A. and Sibbit, A.: 1988, ‘Electrical Conduction in Clay-Bearing Sandstones at Low and High Salinities’,J. Appl. Phys. 63, 4832–4840.

    Google Scholar 

  • Sen, P. N., Straley, C., Kenyon, W. E. and Wittingham, M. S.: 1990, ‘Surface-to-Volume Ratio, Charge Density, Nuclear Magnetic Relaxation, and Permeability in Clay-Bearing Sandstones’,Geophysics 55(1), 61–69.

    Google Scholar 

  • Siegesmund, S., Vollbrecht, A., Chlupac, T., Nover, G., Dürrast, H., Müller, J. and Weber, K.: 1993, ‘Fabric-Controlled Anisotropy of Petrophysical Properties Observed in KTB Core Samples’,Scient. Drill. 4, 31–54.

    Google Scholar 

  • Thompson, A. H., Katz, A. J. and Krohn, C. E.: 1987, ‘The Microgeometry and Transport Properties of Sedimentary Rock’,Advances in Physics 36(5), 625–694.

    Google Scholar 

  • Trimmer, D., Bonner, B., Heard, H. C. and Duba, A.: 1980, ‘Effect of Pressure and Stress on Water Transport in Intact and Fracturated Gabbro and Granite’,J. Geophys. Res. 85(B12), 7059–7071.

    Google Scholar 

  • Trimmer, D.: 1981, ‘Design Criteria for Laboratory Measurements of Low Permeability Rocks’,Geophys. Res. Lett. 8, 973–975.

    Google Scholar 

  • Trimmer, D.: 1982, ‘Laboratory Measurements of Ultralow Permeability of Geological Materials’,Rev. Sci. Instrum. 53(8), 1246–1254.

    Google Scholar 

  • Vinegar, H. J. and Waxman, M. H.: 1984, ‘Induced Polarisation of Shaly Sands’,Geophysics 45, 1267–1287.

    Google Scholar 

  • Walsh, J. B. and Brace, W. F.: 1984, ‘The Effect of Pressure on Porosity and the Transport Properties of Rock’,J. Geophys. Res. 89, 9425–9431.

    Google Scholar 

  • Waxman, M. H. and Smits, L. J. M.: 1968, ‘Electrical Conductivities in Oil-Bearing Shaly Sands’,J. Soc. Petr. Eng. 243, 107–122.

    Google Scholar 

  • Will, G. and Nover, G.: 1986, ‘Measurements of the Frequency Dependence of the Electrical Conductivity and Some other Petrophysical Parameters of Core Samples from the Konzen (West Germany) Drill Hole’,Annales Geophysicae 4(B2), 173–182.

    Google Scholar 

  • Wong, P., Koplik, J. and Tomanic, J. P.: 1984, ‘Conductivity and Permeability of Rocks’,Phys. Rev. B 30(11), 6606–6614.

    Google Scholar 

  • Worthington, P. F.: 1975, ‘Quantitative Geophysical Investigation of Granular Aquifers’,Geophys. Surv. 2, 313–366.

    Google Scholar 

  • Wyllie, M. R. J. and Rose, W. D.: 1950, ‘Some Theoretical Considerations Related to the Quantitative Evaluation of the Physical Characteristics of Reservoir Rock from Electrical Log Data’,Trans. Am. Inst. Mech. Eng. 189, 105–118.

    Google Scholar 

  • Yamada, S. E. and Jones, A. H.: 1980, ‘A Review of a Pulse Technique for Permeability Measurements’,SPEJ 20, 357–358.

    Google Scholar 

  • Zoback, M. D. and Byerlee, J. D.: 1975, ‘Permeability and Effective Stress’,Am. Ass. Petrol. Geologists Bull. 59, 154–158.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freund, D., Nover, G. Hydrostatic pressure tests for the permeability - formation factor relation on crystalline rocks from the KTB drilling project. Surv Geophys 16, 47–62 (1995). https://doi.org/10.1007/BF00682712

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682712

Key words

Navigation