Skip to main content
Log in

Multilayer isotherms of neon adsorbed on exfoliated graphite

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Isotherms of neon adsorbed on compressed exfoliated graphite were measured, using a standard volumetric method, in the temperature interval of 12–24 K for the four first layers. The critical temperatures for the first three layers were determined to be 16.0±1.0, 19.0±1.0 K, and 18.0±1.0 K, respectively. From the isotherms, the isosteric heats of adsorption were calculated as a function of coverage, indicating some interesting features, which may be attributed to possible phase transitions. The isosteric heat of adsorption for the fourth layer on,Q st/R=.275 K, is comparable to the three-dimensional latent heat of sublimation 256 K at the triple point. The binding energies for the first, second, and third layers were obtained from the isosteric heats as V → 0, yielding 302.5, 237.5, and 227.5 K, respectively. The differential molar entropies and internal molar energies were also calculated as a function of coverage. The possibility of a coexistence region with two solids having different structures in the phase diagram for the first layer is discussed. Whenever possible, the results are compared with theoretical evaluations and previous experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tiby, H. Wiechert, and H. J. Lauter,Surf. Sci. 119, 21 (1982).

    Article  Google Scholar 

  2. S. Calisti, J. Suzanne, and J. A. Venables,Surf. Sci. 115, 455 (1982).

    Article  Google Scholar 

  3. R. E. Rapp, E. P. de Souza, and E. Lerner,Phys. Rev. B 24, 2196 (1981).

    Article  ADS  Google Scholar 

  4. G. B. Huff and J. G. Dash,J. Low Temp. Phys. 24, 155 (1975).

    Article  Google Scholar 

  5. E. Lerner, S. G. Hegde, and J. G. Daunt,Phys. Lett. 41A, 239 (1972).

    ADS  Google Scholar 

  6. E. Lerner and F. Hanono,J. Low Temp. Phys. 35, 363 (1979).

    Article  Google Scholar 

  7. T. Takaishi and Y., Sensui,Trans. Faraday Soc. 59, 2503 (1963).

    Article  Google Scholar 

  8. Y. Larher,Mol. Phys. 38, 789 (1979).

    Article  Google Scholar 

  9. E. P. de Souza, M. Sci. Thesis, Universidade Federal do Rio de Janeiro (1979), unpublished.

  10. E. R. Grilly,Cryogenics 4, 226 (1962).

    Article  Google Scholar 

  11. J. A. Barker, D. Henderson, and F. F. Abraham,Physica 106A, 226 (1981); J. A. Barker,Proc. R. Soc. Lond. A 377, 425 (1981).

    ADS  Google Scholar 

  12. F. Millot, Y. Larher, and C. Tessier,J. Chem. Phys. 76, 3327 (1982).

    Article  ADS  Google Scholar 

  13. Y. Larher and B. Gilquin,Phys. Rev. A 20, 1599 (1979).

    Article  ADS  Google Scholar 

  14. J. Rouquerol, S. Partyka, and F. Rouquerol,J. Chem. Soc. Faraday Trans. I 73, 306 (1977).

    Article  Google Scholar 

  15. L. W. Bruch, J. M. Phillips, and X.-Z. Ni,Surf. Sci. 136, 361 (1984).

    Article  Google Scholar 

  16. A. Thomy and X. Duval,J. Chim. Phys. 67, 1101 (1970).

    Google Scholar 

  17. J. P. McTague and A. D. Novaco,Phys. Rev. B 19, 5299 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanono, F., Gatts, C.E.N. & Lerner, E. Multilayer isotherms of neon adsorbed on exfoliated graphite. J Low Temp Phys 60, 73–84 (1985). https://doi.org/10.1007/BF00681654

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681654

Keywords

Navigation