Skip to main content
Log in

The effect of heat flow and nonhydrostatic strain on the surface of helium crystals

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Experiments to measure the kinetic coefficients of the helium crystal surface, which have been criticized by Grabinski and Liu,1 are analyzed to determine the effect of heat flow through the surface and the effect of nonhydrostatic crystal strain. The experiments studied are the low-temperature measurements of the damping of melting-freezing waves in4He, the high-temperature relaxation of the4He crystal surface after an electrostatic disturbance, the relaxation in shape of a3He crystal, and the measurement of the Onsager cross-coefficient using a heat current in4He. After a review of the theory, in which the dependence of the growth coefficient on the thermal conditions of the experiment is discussed, the corrections to published results due to heat flow are shown to be small and within the experimental errors. The effect of nonhydrostatic strain is shown to be second order and consequently negligible in most existing measurements of kinetic or static properties. However, if sufficiently large, nonhydrostatic strain produces an instability of the surface that was predicted by Grinfeld.7 This effect may explain a corrugation of the surface observed by Bodensohn et al.9 during rapid cooling. The threshold for the Grinfeld instability and the frequency and damping of melting-freezing waves below the threshold is discussed. We propose a new experiment to study the instability and to measure the elastic and plastic properties of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Grabinski and M. Liu,J. Low Temp. Phys. 75, 271 (1989).

    Google Scholar 

  2. B. Castaing and P. Nozieres,J. Phys. (Paris)41, 701 (1980).

    Google Scholar 

  3. R. M. Bowley and D. O. Edwards,J. Phys. (Paris)44, 723 (1983).

    Google Scholar 

  4. P. E. Wolf, D. O. Edwards, and S. Balibar,J. Low Temp. Phys. 51, 489 (1983).

    Google Scholar 

  5. D. O. Edwards, S. Balibar, and P. E. Wolf,75th Jubilee Conference on Helium-4, J. G. M. Armitage, ed. (World Scientific, [Singapore 1983), p. 70.

    Google Scholar 

  6. S. E. Korshunov,Zh. Eksp. Teor. Phys. 92, 1320 (1987) (Sov. Phys. JETP 65, 741 (1987)).

    Google Scholar 

  7. M. A. Grinfeld,Dokl. Akad. Nauk SSSR 290, 1358 (1986) [Sov. Phys. Dokl. 31, 831 (1986)].

    Google Scholar 

  8. P. Nozieres, Lectures given at the Beg-Rohu (Brittany) Summer School, 1989 (to be published).

  9. J. Bodensohn, K. Nicolai, and P. Leiderer,Z. Phys. B 64, 55 (1986).

    Google Scholar 

  10. L. D. Landau and I. M. Lifshitz,Statistical Physics, Third Edition, Part 1 (Pergamon Press, London, 1980), p. 368.

    Google Scholar 

  11. H. J. Maris and T. E. Huber,J. Low Temp. Phys. 48, 99 (1982).

    Google Scholar 

  12. V. I. Marchenko and A. Ya. Parshin,Pis'ma Zh. Eksp. Teor. Fiz. 31, 767 (1980) [Sov. Phys. JETP Lett. 31, 724 (1980)].

    Google Scholar 

  13. E. R. Grilly,J. Low Temp. Phys. 11, 33 (1973).

    Google Scholar 

  14. P. Nozieres and M. Uwaha,J. Phys. (Paris)48, 389 (1987).

    Google Scholar 

  15. T. H. Huber and H. J. Maris,Phys. Rev. Lett. 47, 1907 (1981);J. Low Temp. Phys. 48, 463 (1982).

    Google Scholar 

  16. B. Castaing, G. Bonfait, and D. Thoulouze,Physica B 109–110, 2093 (1982); L. Puech, B. Hebral, D. Thoulouze, and B. Castaing,J. Phys. Lett. (Paris)43, L809 (1982).

    Google Scholar 

  17. L. Puech, G. Bonfait, and B. Castaing,J. Low Temp. Phys. 62, 315 (1986).

    Google Scholar 

  18. F. Graner, S. Balibar, and E. Rolley,J. Low Temp. Phys. 75, 69 (1989).

    Google Scholar 

  19. A. F. Andreev and A. Ya Parshin,Zh. Eksp. Teor. Fiz. 75, 1511 (1978) [Sov. Phys. JETP 48, 763 (1978)].

    Google Scholar 

  20. A. F. Andreev and V. G. Knizhnik,Zh. Eksp. Teor. Fiz. 83, 416 (1982) [Sov. Phys. JETP 56, 226 (1982)].

    Google Scholar 

  21. K. O. Keshishev, A. Ya. Parshin, and A. B. Babkin,Zh. Eksp. Teor. Fiz. 80, 716 (1981) [Sov. Phys. JETP 53, 362 (1981)].

    Google Scholar 

  22. G. Agnolet,Jpn. J. Appl. Phys. 26, A79 (1987);

    Google Scholar 

  23. S. V. Iordanskii and S. E. Korshunov,Zh. Eksp. Teor. Phys. 87, 927 (1984) [Sov. Phys. JETP 60, 528 (1984)].

    Google Scholar 

  24. L. Puech and B. Castaing,J. Phys. Lett. (Paris)43, 601 (1982).

    Google Scholar 

  25. S. Mukherjee and D. O. Edwards,Jpn. J. Appl. Phys. 26, A113 (1987); D. O. Edwards, S. Mukherjee, and M. S. Pettersen,Phys. Rev. Lett. 64, 902 (1990).

    Google Scholar 

  26. R. J. Donnelly and P. H. Roberts,J. Low Temp. Phys. 27, 687 (1977).

    Google Scholar 

  27. B. M. Abraham, Y. Eckstein, J. B. Ketterson, M. Kuchnir, and P. R. Roach,Phys. Rev. A 1, 250 (1970).

    Google Scholar 

  28. W. R. Gardner, J. K. Hoffer, and N. E. Phillips,Phys. Rev. A 7, 1029 (1973).

    Google Scholar 

  29. R. M. Bowley and D. O. Edwards, unpublished.

  30. F. Graner, R. M. Bowley, and P. Nozieres,J. Low Temp. Phys. 80, 113 (1990).

    Google Scholar 

  31. G. Armstrong and A. S. Greenberg,J. Phys. (Paris)39-C6, 135 (1978).

    Google Scholar 

  32. E. R. Grilly,J. Low Temp. Phys. 4, 615 (1971).

    Google Scholar 

  33. A. C. Anderson, J. I. Connolly, O. E. Vilches, and J. C. Wheatley,Phys. Rev. 147, 90 (1966).

    Google Scholar 

  34. S. Balibar, D. O. Edwards, and C. Laroche,Phys. Rev. Lett. 42, 782 (1979).

    Google Scholar 

  35. J. Landau, S. G. Lipson, L. M. Maatanen, L. S. Balfour, and D. O. Edwards,Phys. Rev. Lett. 45, 31 (1980).

    Google Scholar 

  36. F. Gallet, P. E. Wolf, and S. Balibar,Phys. Rev. Lett. 52, 2253 (1984).

    Google Scholar 

  37. P. E. Wolf, F. Gallet, S. Balibar, E. Rolley, and P. Nozieres,J. Phys. (Paris)46, 1987 (1985).

    Google Scholar 

  38. F. Gallet, S. Balibar, and E. Rolley,J. Phys. (Paris)48, 369 (1987).

    Google Scholar 

  39. J. W. Gibbs,The Scientific Papers of J. Willard Gibbs (Dover, New York 1961), p. 195.

    Google Scholar 

  40. L. D. Landau and I. M. Lifshitz,Theory of Elasticity (Pergamon Press, London, 1970), chapter 1, sections 1–7.

    Google Scholar 

  41. L. D. Landau and I. M. Lifshitz,Statistical Physics, Third Edition, Part 1 (Pergamon Press, London, 1980), chapter 12 and particularly the footnote on p. 368.

    Google Scholar 

  42. P. Nozieres and D. E. Wolf,Z. Phys. B 70, 399 (1988);70, 507 (1988).

    Google Scholar 

  43. M. Uwaha and G. Baym,Phys. Rev. B 26, 4928 (1982).

    Google Scholar 

  44. A. F. Andreev,Progress in Low Temperature Physics, Vol. 8, D. F. Brewer, ed. (North-Holland, Amsterdam, 1982).

    Google Scholar 

  45. S. Balibar and B. Castaing,Surf. Sci. Rep. 5, 87 (1985).

    Google Scholar 

  46. P. R. Granfors, B. A. Fraass, and R. O. Simmons,J. Low Temp. Phys. 67, 353 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This laboratory is associated with the CNRS and the Universite Pierre et Marie Curie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balibar, S., Edwards, D.O. & Saam, W.F. The effect of heat flow and nonhydrostatic strain on the surface of helium crystals. J Low Temp Phys 82, 119–143 (1991). https://doi.org/10.1007/BF00681525

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681525

Keywords

Navigation