Skip to main content
Log in

Persistent currents in superfluid3He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Measurements are reported of persistent currents in superfluid3He-B and3He-A. An ac gyroscope filled with 20 µm powder and mounted into a rotating nuclear refrigerator was employed. In3He-B, undiminished circulation was observed for 48 h; this implies an effective viscosity at least 12 orders of magnitude lower than in the normal fluid at the same temperature. AtP<15 bar, the observed critical velocity is independent of temperature but it is a weak function of pressure;v c varies between 4 and 6 mm/sec. The response to rotation is hysteretic, with elastic potential flow at slow rotation and irreversible vortex flow at higher angular velocities. The persistent angular momentumL is reversible when thermally cycled in the B phase, and proportional to the superfluid fraction ρ s /ρ. Above 15 bar the B phase splits into separate regions with different critical velocities. The measuredv c in the phase existing only at high pressures is dependent on magnetic field; for example, at 23.0 bar,v c (H=0) =5 mm/sec, butv c (H=40 G) =15 mm/sec. In the low pressure phase,v c is insensitive to a change in the magnetic field. The phase transition is of first order; the latent heatQ G (≈1 µJ/mole) depends on the maximum angular velocity at which the cryostat was rotated. The transition is proposed to occur in the core structure of pinned quantized vortices sustaining persistent currents. In3He-A, currents could not be found to persist on an observable level. Direct measurements ofL atH=0 and atH=40 G, and repeated thermal cycling, showed that either the current decays rapidly orv c <0.5 mm/sec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Dahm, D. S. Betts, D. F. Brewer, J. Hutchins, J. Saunders, and W. S. Truscott,Phys. Rev. Lett. 45, 1411 (1980).

    Google Scholar 

  2. J. M. Parpia and J. D. Reppy,Phys. Rev. Lett. 43, 1332 (1979).

    Google Scholar 

  3. J. P. Eisenstein and R. E. Packard,Phys. Rev. Lett. 49, 564 (1982).

    Google Scholar 

  4. M. T. Manninen and J. P. Pekola,Phys. Rev. Lett. 48, 812, 1369 (E); M. T. Manninen and J. P. Pekola,J. Low Temp. Phys. 52, 497 (1983).

  5. M. T. Manninen, J. P. Pekola, R. G. Sharma, and M. S. Tagirov,Phys. Rev. B 26, 5233 (1982).

    Google Scholar 

  6. M. A. Paalanen and D. D. Osheroff,Phys. Rev. Lett. 45, 362 (1980).

    Google Scholar 

  7. P. L. Gammel, H. E. Hall, and J. D. Reppy,Phys. Rev. Lett. 52, 121 (1984).

    Google Scholar 

  8. J. P. Pekola, J. T. Simola, K. K. Nummila, O. V. Lounasmaa, and R. E. Packard,Phys. Rev. Lett. 53, 70 (1984).

    Google Scholar 

  9. J. P. Pekola, J. T. Simola, P. J. Hakonen, M. Krusius, O. V. Lounasmaa, K. K. Nummila, G. Mamniashvili, R. E. Packard, and G. E. Volovik,Phys. Rev. Lett. 53, 584 (1984).

    Google Scholar 

  10. J. P. Pekola, J. T. Simola, K. K. Nummila, O. V. Lounasmaa, and R. E. Packard, inProc. LT-17. U. Eckern et al., eds. (North-Holland, New York, 1984), p. 35.

    Google Scholar 

  11. A. L. Fetter, inThe Physics of Liquid and Solid Helium, Part I, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1976), p. 207.

    Google Scholar 

  12. P. Bhattacharya, T.-L. Ho, and N. D. Mermin,Phys. Rev. Lett. 39, 1290 (1977).

    Google Scholar 

  13. A. L. Fetter,Phys. Rev. Lett. 40, 1656 (1978).

    Google Scholar 

  14. P. J. Hakonen, O. T. Ikkala, S. T. Islander, T. K. Markkula, P. M. Roubeau, K. M. Saloheimo, D. I. Garibashvili, and J. S. Tsakadze,Cryogenics 23, 243 (1983).

    Google Scholar 

  15. P. J. Hakonen, M. Krusius, G. Mamniashvili, and J. T. Simola, inProc. LT-17. U. Eckern et al., eds. (North-Holland, New York, 1984), p. 49.

    Google Scholar 

  16. I. Rudnick, H. Kojima, W. Veith, and R. S. Kagiwada,Phys. Rev. Lett. 23, 1220 (1969).

    Google Scholar 

  17. H. Kojima, Ph.D. Thesis, University of California at Los Angeles (1972).

  18. J. S. Marcus, Ph.D. Thesis, University of California at Los Angeles (1982).

  19. J. D. Reppy,Phys. Rev. Lett. 14, 733 (1965).

    Google Scholar 

  20. J. R. Clow and J. D. Reppy,Phys. Rev. Lett. 19, 291 (1967).

    Google Scholar 

  21. J. S. Langer and J. D. Reppy, inProgress in Low Temperature Physics, Vol. VI, C. J. Gorter, ed. (North-Holland, Amsterdam, 1970), p. 34.

    Google Scholar 

  22. J. Heiserman, Ph.D. Thesis, University of California at Los Angeles (1975).

  23. K. Magnus,Kreisel (Springer, 1971), p. 49.

  24. J. P. Pekola, J. T. Simola, and K. K. Nummila,Proc. ICEC10 (1984), to be published.

  25. M. T. Huiku, T. A. Jyrkkiö, M. T. Loponen, and O. V. Lounasmaa, inQuantum Fluids and Solids—1983, E. D. Adams and G. G. Ihas, eds. (American Institute of Physics, New York, 1983), p. 441.

    Google Scholar 

  26. C. N. Archie, T. A. Alvesalo, J. D. Reppy, and R. C. Richardson,Phys. Rev. Lett. 43, 139 (1979).

    Google Scholar 

  27. H. Lamb,Hydrodynamics (Dover, 1945), pp. 85, 124.

  28. A. L. Fetter,Phys. Rev. B 29, 5182 (1984).

    Google Scholar 

  29. S. V. Iordanskii,Zh. Eksp. Teor. Fiz. 48, 708 (1965);Sov. Phys. JETP 21, 467 (1965).

    Google Scholar 

  30. J. S. Langer and M. E. Fisher,Phys. Rev. Lett. 19, 560 (1967).

    Google Scholar 

  31. S. J. Puttermann,Superfluid Hydrodynamics (North-Holland, 1974), pp. 255–262.

  32. G. Kukich, R. P. Henkel, and J. D. Reppy,Phys. Rev. Lett. 21, 197 (1968).

    Google Scholar 

  33. O. T. Ikkala, G. E. Volovik, P. J. Hakonen, Yu. M. Bunkov, S. T. Islander, and G. A. Kharadze,Pis'ma Zh. Eksp. Teor. Fiz. 35, 338 (1982);JETP Lett. 35, 416 (1982).

    Google Scholar 

  34. P. J. Hakonen, O. T. Ikkala, S. T. Islander, O. V. Lounasmaa, and G. E. Volovik,J. Low Temp. Phys. 53, 425 (1983).

    Google Scholar 

  35. Ren-Zhi Ling, D. S. Betts, and D. F. Brewer,Phys. Rev. Lett. 53, 930 (1984).

    Google Scholar 

  36. T. A. Alvesalo, T. Haavasoja, and M. T. Manninen,J. Low Temp. Phys. 45, 373 (1981).

    Google Scholar 

  37. D. D. Awschalom and K. W. Schwarz,Phys. Rev. Lett. 52, 49 (1984).

    Google Scholar 

  38. M. M. Salomaa and G. E. Volovik,Phys. Rev. Lett. 51, 2040 (1983).

    Google Scholar 

  39. M. M. Salomaa and G. E. Volovik,Phys. Rev. B, submitted.

  40. R. Bruinsma and K. Maki,J. Low Temp. Phys. 37, 607 (1979).

    Google Scholar 

  41. A. J. Leggett,Rev. Mod. Phys. 47, 331 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekola, J.P., Simola, J.T. Persistent currents in superfluid3He. J Low Temp Phys 58, 555–590 (1985). https://doi.org/10.1007/BF00681144

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681144

Keywords

Navigation