Skip to main content
Log in

Wave equation for a magnetic monopole

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We show that there is room, in the Dirac equation, for a massless monopole. The basic idea is that the Dirac equation admits a second electromagnetic minimal coupling associated to the chiral gauge\(e^{i\gamma _5 \theta }\), which is only valid for a massless particle, but satisfies all the symmetry laws of a monopole. In the problem of the diffusion on a central electric field, we find the Poincaré integral and the Dirac relationeg/ħ=n/2. The latter is deduced as a consequence of the fact (which is shown in this paper) thateg/c is the projection of the total angular momentum on the symmetry axis of the system formed by the monopole and the electric charge. Another important property is that a monopole and an antimonopole have opposite helicities (as for the neutrino), but do not have opposite charges: this precludes a vacuum magnetic polarization which would be analogous to the electric one, but allows us to imagine an aether made up of monopole-antimonopole pairs. The theory is then generalized on the basis of a nonlinear equation which is the most general invariant equation under the chiral gauge law. This equation admits solutions corresponding to massive monopoles, among which there are bradyons (i.e., ordinary massive particles) and tachyons. This equation is shown to be closely related to previous works initiated by Hermann Weyl, on Dirac's theory in the framework of general relativity. In conclusion, it is suggested that massless monopoles are perhaps excited states of the neutrino and that they may be produced in some weak interactions. Consequences on the solar activity are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, A., and Soler, M. (1983).Physical Review Letters,50, 1230.

    Google Scholar 

  • Burzlaff, J. (1983). Magnetic poles in gauge field theories,Communications of the Dublin Institute for Advanced Studies Series A: Theoretical Physics,27.

  • Cabibbo, N., and Ferrari, G. (1962).Nuovo Cimenta,23, 1147.

    Google Scholar 

  • Cabrera, B., and Trower, W. P. (1983).Foundation of Physics,13, 195.

    Google Scholar 

  • Curie, P. (1984).Journal of Physics,3(3), 415.

    Google Scholar 

  • Dirac, P. A. M. (1931).Proceedings of the Royal Society,A133, 60.

    Google Scholar 

  • Fierz, M. (1944).Helvetica Physica Acta,17, 27.

    Google Scholar 

  • Finkelstein, R., Fronsdal, C., and Kraus, P. (1956).Physical Review,103, 1571.

    Google Scholar 

  • Finkelstein, R., Lelevier, R., and Ruderman, M. (1951).Physical Review,83, 326.

    Google Scholar 

  • Gelfand, I. M., Minlos, R. A., and Shapiro, Z. Ya. (1963). Representations of the rotation and Lorentz groups and their applications, Pergamon Press, New York.

    Google Scholar 

  • Gelfand, I. M. and Shapiro, Z. Ya. (1956). Representations of the group of rotations, Annals of the Mathematics Society Translations,2 (2).

  • Goldhaber, A. S. (1965).Physical Review,B140, 1407.

    Google Scholar 

  • Halbwachs, F. (1960). Théorie relativiste des fluides à spin, Gauthier-Villars, Paris.

    Google Scholar 

  • Harrison, H., Krall, N. A., Eldridge, O. C., Fehsenfeld, F., Fite, W. L., and Teutsch, W. B. (1963).American Journal of Physics, 31, 249.

    Google Scholar 

  • Heisenberg, W. (1954).Zeitschrift fur Naturforschung,9A, 292.

    Google Scholar 

  • Heisenberg, W. (1958). International conference on elementary particles, Geneva.

  • Heisenberg, W., Dürr, H., Mitter, H., Schlieder, S., and Yamazaki, K. (1959).Zeitschrift fur Naturforschung,14A (5/6).

    Google Scholar 

  • Heisenberg, W., Kortel, F., and Mitter, H. (1955).Zeitschrift fur Naturforschung,10A, 425.

    Google Scholar 

  • Ince, E. L. (1956). Ordinary differential Equations, Dover, New York.

    Google Scholar 

  • Jackson, J. D. (1975). Classical electrodynamics, Wiley, New York.

    Google Scholar 

  • Jaffe, A., and Taubes, C. (1980). Vortices and monopoles, Birkhäuser, Boston.

    Google Scholar 

  • Jakobi, G., and Lochak, G. (1956a).Comptes Rendus,243, 234.

    Google Scholar 

  • Jakobi, G., and Lochak, G. (1956b).Comptes Rendus,243, 357.

    Google Scholar 

  • Kazama, Y., Yang, C. N., and Goldhaber, A. S. (1977).Physical Review,D15, 2287.

    Google Scholar 

  • Kibble, T. W. B. (1961).Journal of Mathematical Physics,2, 212.

    Google Scholar 

  • Lochak, G. (1957).Comptes Rendus,245, 2023.

    Google Scholar 

  • Lochak, G. (1959). Cahiers de Physique,13, 41.

    Google Scholar 

  • Lochak, G. (1983).Annales of the Fondation of L. de Broglie,8, 345.

    Google Scholar 

  • Lochak, G. (1984).Annales of the Fondation of L. de Broglie,9, 1.

    Google Scholar 

  • Pauli, W. (1936).Annales de l'Institut Henri Poincaré,6, 109.

    Google Scholar 

  • Pauli, W. (1957).Nuovo Cimento,6, 204.

    Google Scholar 

  • Polyakov, A. M. (1974).JETP Letters,20, 194.

    Google Scholar 

  • Poincaré, H. (1896).Comptes Rendus,123, 530.

    Google Scholar 

  • Rañada, A. (1978).Journal of Physics,A11, 341.

    Google Scholar 

  • Rañada, A. (1984). Model of dirac quarks with Thirring coupling (preprint).

  • Ranãda, A., and Soler, M. (1972).Journal of Mathematical Physics,13, 671.

    Google Scholar 

  • Ray, J., and Smalley, L. (1982).Physical Review Letters,49, 1059.

    Google Scholar 

  • Ray, J., and Smalley, L. (1983).Physical Review,D27, 1383.

    Google Scholar 

  • Recami, E. (1979). In Relativity, quanta, and cosmology in the development of the scientific thought of A. Einstein, M. Pantaleo, and F. de Finis, ed., Joseph Reprint Corporation, New York.

    Google Scholar 

  • Rodichev, V. I. (1961).Soviet Physics JETP,13, 1029.

    Google Scholar 

  • Salam, A. (1966).Physics Letters,22, 683.

    Google Scholar 

  • Smalley, L., and Ray, J. (1984). Geometrization of spin and proof of the Weyssenhoff fluid conjecture (preprint).

  • Soler, M. (1970).Physical Review,D1, 2766.

    Google Scholar 

  • 't Hooft, G. (1974).Nuclear Physics,B79, 276.

    Google Scholar 

  • Takabayasi, T. (1957). Progress of Theoretical Physics,4.

  • Tamm, I. (1931).Zeitschrift fuer Physik,71, 141.

    Google Scholar 

  • Thirring, W. (1958).Annales of Physics (NY),3, 91.

    Google Scholar 

  • Thomson, J. J. (1904). Elements of the mathematical theory of electricity and magnetism, Cambridge University Press, Oxford.

    Google Scholar 

  • Touschek, B. (1957).Nuovo Cimento,5, 1281.

    Google Scholar 

  • Weyl, H. (1950).Physical Review,77, 699.

    Google Scholar 

  • Wu, T. T., and Yang, C. N. (1975).Physical Review,D12, 3845.

    Google Scholar 

  • Wu, T. T., and Yang, C. N. (1976).Nuclear Physics,B107, 365.

    Google Scholar 

  • Yamagishi, H. (1983).Physical Review,D27, 2383.

    Google Scholar 

  • Yvon, J. (1940).Journal of Physics,1, 18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lochak, G. Wave equation for a magnetic monopole. Int J Theor Phys 24, 1019–1050 (1985). https://doi.org/10.1007/BF00670815

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00670815

Keywords

Navigation