Skip to main content
Log in

The p53 tumor suppressor gene in breast cancer

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

Alterations of the p53 tumor suppressor gene are the most common genetic changes found so far in breast cancer, suggesting that the gene plays a central role in the development of the disease. p53 functions as a negative regulator of cell growth, and alterations in the gene lead to loss of this negative growth regulation and more rapid cell proliferation. A number of independent groups using different methods of detection have shown that p53 alterations are associated with more aggressive tumor biologic factors and a poorer prognosis in breast cancer patients. Because of its possible role in the regulation of apoptosis and response to DNA damage, p53 status could also be a predictive marker for response to hormonal or chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 mutations in human cancers. Science 253:252–254, 1991

    Google Scholar 

  2. Osborne RJ, Merlo GR, Mitsudomi T, Venesio T, Liscia DS, Cappa APM, Chiba I, Takahashi T, Nau MM, Callahan R, Minna JD: Mutations in the p53 gene in primary human breast cancers. Cancer Res 51:6194–6198, 1991

    Google Scholar 

  3. Noble JR, Willetts KE, Mercer WE, Reddel RR: Effects of exogenous wild-type p53 on a human lung carcinoma cell line with endogenous wild-type p53. Exper Cell Res 203:297–304, 1992

    Google Scholar 

  4. Cajot J-F, Anderson MJ, Lehman TA, Shapiro H, Briggs AA, Stanbridge EJ: Growth suppression mediated by transfection of p53 in Hut292DM human lung cancer cells expressing endogenous wild-type p53 protein. Cancer Res 52:6956–6960, 1992

    Google Scholar 

  5. Finlay CA, Hinds PW, Levine AJ: The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093, 1989

    Google Scholar 

  6. Funk WD, Pak DT, Karas RH, Wright WE, Shay JW: A transcriptionally active DNA-binding site for human p53 protein complexes. Molec Cell Biol 12:2866–2871, 1992

    Google Scholar 

  7. Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B: Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711, 1991

    Google Scholar 

  8. Mack DH, Vartikar J, Pipas JM, Laimins LA: Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature 363:281–283, 1993

    Google Scholar 

  9. Fields S, Jang SK: Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049, 1990

    Google Scholar 

  10. Seto E, Usheva A, Zambetti GP, Momand J, Horikoshi N, Weinmann R, Levine AJ, Shenk T: Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc Natl Acad Sci USA 89:12028–12032, 1992

    Google Scholar 

  11. Ramqvist T, Magnusson KP, Wang Y, Szekely L, Klein G, Wiman KG: Wild-type p53 induces apoptosis in a Burkitt lymphoma (BL) line that carries mutant p53. Oncogene 8:1495–1500, 1993

    Google Scholar 

  12. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M: Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347, 1991

    Google Scholar 

  13. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW: Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311, 1991

    Google Scholar 

  14. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD: Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935, 1992

    Google Scholar 

  15. Feinstein E, Gale RP, Reed J, Canaani E: Expression of the normal p53 gene induces differentiation of K562 cells. Oncogene 7:1853–1857, 1992

    Google Scholar 

  16. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM: Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70:937–948, 1992

    Google Scholar 

  17. Lin D, Shields MT, Ullrich SJ, Appella E, Mercer WE: Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late G1 phase. Proc Natl Acad Sci USA 89:9210–9214, 1992

    Google Scholar 

  18. Michalovitz D, Halevy O, Oren M: Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62:671–680, 1990

    Google Scholar 

  19. Rovinski B, Benchimol S: Immortalization of rat embryo fibroblasts by the cellular p53 oncogene. Oncogene 2:445–452, 1988

    Google Scholar 

  20. Jenkins JR, Rudge K, Currie GA: Cellular immortalization by a cDNA clone encoding the transformationassociated phosphoprotein p53. Nature 312:651–654, 1984

    Google Scholar 

  21. Tsuda H, Iwaya K, Fukutomi T, Hirohashi S: p53 mutations and c-erbB-2 amplification in intraductal and invasive breast carcinomas of high histologic grade. Jpn J Cancer Res 84:394–401, 1993

    Google Scholar 

  22. Davidoff AM, Kerns B-JM, Pence JC, Marks JR, Iglehart JD: p53 alterations in all stages of breast cancer. J Surg Oncol 48:260–267, 1991

    Google Scholar 

  23. Thor AD, Moore DH II, Edgerton SM, Kawasaki ES, Reihsaus E, Lynch HT, Marcus JN, Schwartz L, Chen L-C, Mayall BH, Smith HS: Accumulation of p53 tumor suppressor gene protein: An independent marker of prognosis in breast cancer. J Natl Cancer Inst 84:845–855, 1992

    Google Scholar 

  24. Runnebaum IB, Nagarajan M, Bowman M, Soto D, Sukumar S: Mutations in p53 as potential molecular markers for human breast cancer. Proc Natl Acad Sci USA 88:10657–10661, 1991

    Google Scholar 

  25. Bártek J, Bártková J, Voitesek B, Stasková Z, Rejthar A, Kovarik J, Lane DP: Patterns of expression of the p53 tumour suppressor in human breast tissues and tumoursin situ andin vitro. Int J Cancer 46:839–844, 1990

    Google Scholar 

  26. Mazars R, Spinardi L, BenChikh M, Simony-Lafontaine J, Jeanteur P, Theillet C: p53 mutations occur in aggressive breast cancer. Cancer Res 52:3918–3923, 1992

    Google Scholar 

  27. Davidoff AM, Humphrey PA, Iglehart JD, Marks JR: Genetic basis for p53 overexpression in human breast cancer. Proc Natl Acad Sci USA 88:5006–5010, 1991

    Google Scholar 

  28. Davidoff AM, Kerns B-JM, Iglehart JD, Marks JR: Maintenance of p53 alterations throughout breast cancer progression. Cancer Res 51:2605–2610, 1991

    Google Scholar 

  29. Allred DC, Clark GM, Elledge R, Fuqua SAW, Brown RW, Chamness GC, Osborne CK, McGuire WL: Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst 85:200–206, 1993

    Google Scholar 

  30. Elledge RM, Fuqua SAW, Clark GM, Pujol P, Allred DC, McGuire WL: Prognostic significance of p53 gene alterations in node-negative breast cancer. Breast Cancer Res Treat 26:225–235, 1993

    Google Scholar 

  31. Marchetti A, Buttitta F, Pellegrini S, Campani D, Diella F, Cecchetti D, Callahan R, Bistocchi M: p53 mutations and histological type of invasive breast carcinoma. Cancer Res 53:4665–4669, 1993

    Google Scholar 

  32. Coles C, Condie A, Chetty U, Steel CM, Evans J, Prosser J: p53 mutations in breast cancer. Cancer Res 52:5291–5298, 1992

    Google Scholar 

  33. Wu JK, Ye Z, Darras BT: Sensitivity of single-strand conformation polymorphism (SSCP) analysis in detecting p53 point mutations in tumors with mixed cell populations. Am J Hum Genet 52:1273–1275, 1993

    Google Scholar 

  34. Barnes DM, Hanby AM, Gillett CE, Mohammed S, Hodgson S, Bobrow LG, Leigh IM, Purkis T, MacGeoch C, Spurr NK, Bartek J, Vojtesek B, Picksley SM, Lane DP: Abnormal expression of wild type p53 protein in normal cells of a cancer family patient. Lancet 340:259–263, 1992

    Google Scholar 

  35. Shaulsky G, Ben-Ze'ev A, Rotter V: Subcellular distribution of the p53 protein during the cell cycle of Balb/c 3T3 cells. Oncogene 5:1701–1711, 1990

    Google Scholar 

  36. Momand J, Zambetti GP, Olson DC, George D, Levine AJ: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245, 1992

    Google Scholar 

  37. Iwaya K, Tsuda H, Hiraide H, Tamaki K, Tamakuma S, Fukutomi T, Mukai K, Hirohashi S: Nuclear p53 immunoreaction associated with poor prognosis of breast cancer. Jpn J Cancer Res 82:835–840, 1991

    Google Scholar 

  38. Hanzal E, Gitsch G, Kohlberger P, Dadak CH, Miechowiecka N, Breitenecker G: Immunohistochemical detection of mutant p53-suppressor gene product in patients with breast cancer: Influence on metastasis-free survival. Anticancer Res 12:2325–2330, 1992

    Google Scholar 

  39. Barnes DM, Dublin EA, Fisher CJ, Levison DA, Millis RR: Immunohistochemical detection of p53 protein in mammary carcinoma: An important new independent indicator of prognosis? Hum Pathol 24:469–476, 1993

    Google Scholar 

  40. Ostrowski JL, Sawan A, Henry L, Wright C, Henry JA, Hennessy C, Lennard JW, Angus B, Horne HW: p53 expression in human breast cancer related to survival and prognostic factors: An immunohistochemical study. J Pathol 164:75–81, 1991

    Google Scholar 

  41. Isola J, Visakorpi T, Holli K, Kallioniemi O-P: Association of overexpression of tumor suppressor protein p53 with rapid cell proliferation and poor prognosis in node-negative breast cancer patients. J Natl Cancer Inst 84:1109–1114, 1992

    Google Scholar 

  42. Silvestrini R, Benini E, Daidone MG, Veneroni S, Boracchi P, Cappelletti V, Di Fronzo G, Veronesi U: p53 as an independent prognostic marker in lymph node-negative breast cancer patients. J Natl Cancer Inst 85:965–970, 1993

    Google Scholar 

  43. Allred DC, Clark GM, Fuqua SAW, Elledge RM, Hilsenbeck SG, Ravdin PM, Yee D, Chamness GC, Osborne CK: Overexpression of p53 in node-positive breast cancer. Breast Cancer Res Treat 27:131, 1993

    Google Scholar 

  44. Noguchi M, Kitagawa H, Kinoshita K, Miyazaki I, Saito Y, Mizukami Y: Prognostic significance of p53 and c-erbB-2 experience in operable breast cancer. Int J Oncol (Greece) 2:587–591, 1993

    Google Scholar 

  45. Sidransky D, Mikkelsen T, Schwechheimer K, Rosenblum ML, Cavanee W, Vogelstein B: Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355:846–847, 1992

    Google Scholar 

  46. Thorlacius S, Börresen A-L, Eyfjörd E: Somatic p53 mutations in human breast carcinomas in an Icelandic population: A prognostic factor. Cancer Res 53:1637–1641, 1993

    Google Scholar 

  47. Wilson AC, Singh M, Thompson HJ: Morphological responses of MOD cells to tamoxifen suggests induction of apoptosis. Proc Am Asso Cancer Res 33:151, 1993

    Google Scholar 

  48. Kyprianou N, English HF, Davidson NE, Isaacs JT: Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res 51:162–166, 1991

    Google Scholar 

  49. Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R, Dickson RB: Evidence that transforming growth factor-β is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48:417–428, 1987

    Google Scholar 

  50. Gerwin BI, Spillare E, Forrester K, Lehman TA, Kispert S, Welsh JA, Pfeifer AMS, Lechner JF, Baker LJ, Vogelstein B, Harris CC: Mutant p53 can induce tumorigenic conversion of human bronchial epithelial cells and reduce their responsiveness to a negative growth factor, transforming growth factor β1. Proc Natl Acad Sci USA 89:2759–2763, 1992

    Google Scholar 

  51. Finlay CA, Hinds PW, Tan T-H, Eliyahu D, Oren M, Levine AJ: Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol 8:531–539, 1988

    Google Scholar 

  52. Yehiely F, Oren M: The gene for the rat heat-shock cognate,hsc70, can suppress oncogene-mediated transformation. Cell Growth Diff 3:803–809, 1992

    Google Scholar 

  53. Lehman TA, Bennett WP, Metcalf RA, et al: p53 mutations,ras mutations, and p53-heat shock protein 70 complexes in human lung carcinoma cell lines. Cancer Res 51:4090–4096, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elledge, R.M., Allred, D.C. The p53 tumor suppressor gene in breast cancer. Breast Cancer Res Tr 32, 39–47 (1994). https://doi.org/10.1007/BF00666204

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00666204

Key words

Navigation