Skip to main content
Log in

Generation of mutagens during arachidonic acid metabolism

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fearon ER, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell 61: 759–767, 1990

    Google Scholar 

  2. Marnett LJ: Polycyclic aromatic hydrocarbon oxidation during prostaglandin biosynthesis. Life Sci 29: 531–546, 1981

    Google Scholar 

  3. Marnett LJ, Eling TE: Cooxidation during prostaglandin biosynthesis: A pathway for the metabolic activation of xenobiotics. In: Hodgson E, Bend JR, Philpot RM (eds) Reviews in biochemical toxicology. Elsevier/North Holland, 1983, pp 135–172

    Google Scholar 

  4. Marnett LJ (ed.) Arachidonic Acid Metabolism and Tumor Initiation. Martinus Nijhoff PUblishing, Boston, 1985

    Google Scholar 

  5. Smith BJ, Curtis JF, Eling TE: Bioactivation of xenobiotics by prostaglandin H synthase. Chem Biol Interact 79: 245–264, 1991

    Google Scholar 

  6. Marnett LJ, Reed GA, Dennison DJ: Prostaglandin synthetase dependent activation of 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene to mutagenic derivatives. Biochem Biophys Res Commun 82: 210–216, 1978

    Google Scholar 

  7. Robertson IGC, Sivarajah K, Eling TE, Zeiger E: Activation of some aromatic amines to mutagenic products by prostaglandin endoperoxide synthetase. Cancer Res 43: 476–480, 1983

    Google Scholar 

  8. Sarkar FH, Radcliff G, Callewaert DM, Marnett LJ, Eling T, Daston DS, Caspary WJ: Mutagenic response of mouse lymphoma cells after activation of benzidine and 2-aminofluorene with purified prostaglandin H synthase. Mutat Res 242: 319–328, 1990

    Google Scholar 

  9. Sarkar FH, Radcliff G, Callewaert DM: Purified prostaglandin synthase activates aromatic amines to derivatives that are mutagenic toSalmonella typhimurium. Mutat Res Lett 282: 273–281, 1992

    Google Scholar 

  10. Degan GH: Prostaglandin-H synthase containing cell lines as tools for studying metabolism and toxicity of xenobiotics. Toxicology 82: 243–256, 1993

    Google Scholar 

  11. Murasaki G, Zenser TV, Davis BB, Cohen SM: Inhibition by aspirin of N-[4-(5-nitro-2-furyl)-2-thiazolyl] formamide-induced bladder carcinogenesis and enhancement of forestomach carcinogenesis. Carcinogenesis 5: 53–55, 1984

    Google Scholar 

  12. Zenser TV, Palmier MO, Mattammal MB, Bolla RI, Davis BB: Comparative effects of prostaglandin H synthase-catalyzed binding of two 5-nitrofuran urinary bladder carcinogens. J Pharmacol Exp Ther 227: 139–143, 1983

    Google Scholar 

  13. Smith RD, Kehrer JP: Cooxidation of cyclophosphamide as an alternative pathway for its bioactivation and lung toxicity. Cancer Res 51: 542–548, 1991

    Google Scholar 

  14. Kubow S, Wells PG:In vitro bioactivation ofphenytoin to a reactive free radical intermediate by prostaglandin synthetase, horseradish peroxidase, and thyroid peroxidase. Mol Pharmacol 35: 504–511, 1989

    Google Scholar 

  15. Rice JR, Zenser TV, Davis BB: Prostaglandin synthase-dependent cooxidation and aromatic amine carcinogenesis. In: Marnett LJ (ed.) Arachidonic acid metabolism and tumor initiation. Martinus Nijhoff, 1985, pp 125–169

  16. Flammang TJ, Yamazoe Y, Benson RW, Roberts DW, Potter DW, Chu DZJ, Lang NP, Kadlubar FF: Arachidonic aciddependent peroxidative activation of carcinogenic arylamines by extrahepatic human tissue microsomes. Cancer Res 49: 1977–1982, 1989

    Google Scholar 

  17. Lambeir AM, Markey CM, Dunford HB, Marnett LJ: Spectral properties of the higher oxidation states of prostaglandin H synthase. J Biol Chem 260: 14894–14896, 1985

    Google Scholar 

  18. Dunford HB, Stillman JS: On the function and mechanism of action of peroxidases. Coord Chem Rev 19: 187–251, 1976

    Google Scholar 

  19. Hsuanyu Y, Dunford HB: Prostaglandin H synthase kinetics. The effect of substituted phenols on cyclooxygenase activity and the substituent effect on phenolic peroxidatic activity. J Biol Chem 267: 17649–17657, 1992

    Google Scholar 

  20. Guengerich FP, MacDonald TL: Mechanisms of cytochrome P-450 catalysis. FASEB J 4: 2453–2459, 1990

    Google Scholar 

  21. MacDonald TL, Gutheim WG, Martin RB, Guengerich FP: Oxidation of substituted N,N-dimethylanilines by cytochrome P-450: Estimation of the effective oxidation potential of cytochrome P-450. Biochemistry 28: 2071–2077, 1989

    Google Scholar 

  22. Picot D, Loll PJ, Garavito RM: The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367: 243–249, 1994

    Google Scholar 

  23. Wendel A: Glutathione peroxidase. In: Jakoby WB (ed.) Enzymatic basis of detoxication. Academic Press, New York, 1980, pp 333–353

    Google Scholar 

  24. Labeque R, Marnett LJ: Homolytic and heterolytic scission of organic hydroperoxides by meso-tetraphenylporphinatoiron (III) and its relation to olefin epoxidation. J Am Chem Soc 111: 6621–6627, 1989

    Google Scholar 

  25. Wilcox AL, Marnett LJ: Polyunsaturated fatty acid alkoxyl radicals exist as carbon-centered epoxyallylic radicals: A key step in hydroperoxide-amplified lipid peroxidation. Chem Res Toxicol 6: 413–416, 1993

    Google Scholar 

  26. Dix TA, Fontana R, Panthani A, Marnett LJ: Hematin-catalyzed epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP-7,8-diol) by polyunsaturated fatty acid hydroperoxides. J Biol Chem 260: 5358–5365, 1985

    Google Scholar 

  27. Eling TE, Thompson DC, Foureman GL, Curtis JF, Hughes MF: Prostaglandin H synthase and xenobiotic oxidation. Annu Rev Pharmacol Toxicol 30: 1–45, 1990

    Google Scholar 

  28. Ji C, Marnett LJ: Oxygen radical-dependent epoxidation of (7S,8S)-dihydroxy-7,8-dihydrobenzo[a]pyrene in mouse skinin vivo. Stimulation by phorbol esters and inhibition by antiinflammatory steroids. J Biol Chem 267: 17842–17848, 1992

    Google Scholar 

  29. Kensler TW, Egner TA, Moore KG, Taffe BG, Twerdok LE, Trush MA: Role of inflammatory cells in the metabolic activation of polycyclic aromatic hydrocarbons in mouse skin. Toxicol Appl Pharmacol 90: 337–346, 1987

    Google Scholar 

  30. Hamberg M, Samuelsson B: On the mechanism of the biosynthesis of prostaglandins E1 and F. J Biol Chem 242: 5336–5343, 1967

    Google Scholar 

  31. Diczfalusy U, Falardeau P, Hammarstrom S: Conversion of prostaglandin endoperoxides to C17-hydroxyacids by human platelet thromboxane synthase. FEBS Lett 84: 271–274, 1977

    Google Scholar 

  32. Mukai FH, Goldstein BD: Mutagenicity of malondialdehyde, a decomposition product of peroxidized polyunsaturated fatty acids. Science 191: 868–869, 1976

    Google Scholar 

  33. Basu AK, Marnett LJ: Unequivocal demonstration that malondialdehyde is a mutagen. Carcinogenesis 4: 331–333, 1983

    Google Scholar 

  34. Spalding JW: Toxicology and carcinogenesis studies of malondialdehyde sodium salt (3-hydroxy-2-propenal, sodium salt) in F344/N rats and B6C3F1 mice. NTP Technical Report 331: 5–13, 1988

    Google Scholar 

  35. Yau TM: Mutagenicity and cytotoxicity of malondialdehyde in mammalian cells. Mech Ageing Dev 11: 137–144, 1979

    Google Scholar 

  36. Bernheim F, Bernheim MLC, Wilbur KM: The reaction between thiobarbituric acid and the oxidation products of certain lipids. J Biol Chem 174: 257–264, 1948

    Google Scholar 

  37. Janero DR: Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biol Med 9: 515–540, 1990

    Google Scholar 

  38. Seto H, Okuda T, Takesue T, Ikemura T: Reaction of malondialdehyde with nucleic acid. I. Formation of fluorescent pyrimido[1,2-a]purin-10(3H)-one nucleosides. Bull Chem Soc Jpn 56: 1799–1802, 1983

    Google Scholar 

  39. Nair V, Turner GA, Offerman RJ: Novel adducts from the modification of nucleic acid bases by malondialdehyde. J Am Chem Soc 106: 3370–3371, 1984

    Google Scholar 

  40. Marnett LJ, Basu AK, O'Hara SM, Weller PE, Rahman AFMM, Oliver JP: Reaction of malondialdehyde with guanine nucleosides: formation of adducts containing oxadiazabicyclononene residues in the base-pairing region. J Am Chem Soc 108: 1348–1350, 1986

    Google Scholar 

  41. Stone K, Ksebati M, Marnett LJ: Investigation of the adducts formed by reaction of malondialdehyde with adenosine. Chem Res Toxicol 3: 33–38, 1990

    Google Scholar 

  42. Stone K, Uzieblo A, Marnett LJ: Studies of the reaction of malondialdehyde with cytosine nucleosides. Chem Res Toxicol 3: 467–472, 1990

    Google Scholar 

  43. Basu AK, O'Hara SM, Valladier P, Stone K, Mols O, Marnett LJ: Identification of adducts formed by reaction of guanine nucleosides with malondialdehyde and structurally related aldehydes. Chem Res Toxicol 1: 53–59, 1988

    Google Scholar 

  44. Basu AK, Marnett LJ, Romano LJ: Dissociation of malondialdehyde mutagenicity inSalmonella typhimurium from its ability to induce interstrand DNA cross-links. Mutat Res 129: 39–46, 1984

    Google Scholar 

  45. Marnett LJ, Hurd HK, Hollstein MC, Levin DE, Esterbauer H, Ames BN: Naturally occurring carbonyl compounds are mutagens inSalmonella tester strain TA104. Mutat Res 148: 25–34, 1985

    Google Scholar 

  46. O'Hara SM, Marnett LJ: DNA sequence analysis of spontaneous and β-methoxy-acrolein-induced mutations inSalmonella typhimurium hisD3052. Mutat Res Fundam Mol Mech Mutagen 247: 45–56, 1991

    Google Scholar 

  47. Benamira M, Johnson K, Chaudhary A, Bruner K, Tibbetts C, Marnett LJ: The mutation spectrum of malondialdehyde. Carcinogenesis, in press

  48. Hollstein M, Sidransky D, Vogelestein B, Harris CC. p53 mutations in human cancer. Science 253: 49–53, 1991

    Google Scholar 

  49. Frederico LA, Kunkel TA, Shaw BR: A sensitive genetic assay for the detection of cytosine deamination: Determination of rate constants and the activation energy. Biochemistry 29: 2532–2537, 1990

    Google Scholar 

  50. Strauss BS: The ‘A rule’ of mutagen specificity: A consequence of DNA polymerase bypass of non-instructional lesions? BioEssays 13: 79–84, 1991

    Google Scholar 

  51. Grollman AP: Site specific mutagenesis. In: Mutations and the Environment. Wiley-Liss, New York, 1990, pp 61–70

    Google Scholar 

  52. Goda Y, Marnett LJ: High performance liquid chromatography with electrochemical detection for determination of the major malondialdehyde-guanine adduct. Chem Res Toxicol 4: 520–524, 1991

    Google Scholar 

  53. Vaca CE, Vodicka P, Hemminki K: Determination of malonaldehyde-modified 2′-deoxyguanosine-3′-monophosphate and DNA by32P-postlabelling. Carcinogenesis 13: 593–599, 1992

    Google Scholar 

  54. Chaudhary AK, Nokubo M, Marnett LJ, Blair IA: Analysis of the malondialdehyde-2′-deoxyguanosine adduct in rat liver DNA by gas chromatography/electron capture negative chemical ionization mass spectrometry. Biolog Mass Spectros 23: 457–464, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marnett, L.J. Generation of mutagens during arachidonic acid metabolism. Cancer Metast Rev 13, 303–308 (1994). https://doi.org/10.1007/BF00666100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00666100

Key words

Navigation