Skip to main content
Log in

Murine models of neoplasia: functional analysis of the tumour suppressor genesRb-1 andp53

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Loss of function of one or both of the two tumour suppressor genesp53 andRB-1 has been recognised as an important step in the development of a variety of human neoplasias for some time. By virtue of the ability to manipulate the genome of murine embryonic stem cells in culture, it has become possible to generate strains of mice which bear inactivations of the murine counterparts of these genes. This article attempts to bring together some of the many results obtained from these murine strains which are shedding light both on the normal role played by both of these genes and the consequences of their dysfunction. Surprisingly neither gene product is revealed to have an indispensable role at the level of the single cell. Hence, even though theRb-1 gene product clearly has an important role in cell cycle regulation animals constitutively deficient in this gene develop relatively normally for the first 10 days of embryogenesis. It is only at and beyond this stage of development that a requirement forRb-1 becomes clear, in the regulation of certain cell populations through control of both proliferation and apoptosis. That loss of function ofRb-1 is associated with tumorigenesis is confirmed by the development of tumours of the pituitary gland within heterozygotes. The retinas of these animals, the target organ for tumorigenesis in humanRB-1 heterozygotes, remain unaffected. The majority of mice homozygous for an inactivatingp53 mutation survive to birth, but then rapidly succumb to tumorigenesis. Heterozygotes also develop tumours, but with a delayed time course and altered spectrum. Analysis of several tissue types from the mutant animals has shownp53 to be crucial for the normal induction of apoptosis following DNA damage, and it is thought that failure of this process is a key predisposing step towards tumorigenesis within the mutant animals. Finally, studies on these and other transgenic strains have revealed interactions between pathways governed by these two genes. For example, the fate ofRb-1 deficient cells has been shown, in some tissues at least, to be dependent upon the functional status ofp53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu H, Marth JD, Orban PC, Mossman H, Rajewsky K: Science 265: 103–106, 1994

    Google Scholar 

  2. Dive C, Wyllie AH: Apoptosis and Cancer Chemotherapy. In: Hickman JA, Tritton TT (eds) Frontiers in pharmacology: Cancer chemotherapy. Oxford: Blackwell Scientific, pp 21–56, 1993

    Google Scholar 

  3. Lane DP, Crawford LV: T Antigen is bound to a host protein in SV40 Transformed cells. Nature 278: 261–263, 1979

    Google Scholar 

  4. Lane DP: Cancer:p53, Guardian of the genome. Nature 358: 15–16, 1992

    Google Scholar 

  5. Hollstein M, Sidransky D, Vogelstein B, Harris CC:p53 Mutations in human cancers. Science 253: 49–53, 1991

    Google Scholar 

  6. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B: Mutations in thep53 gene occur in diverse human tumour types. Nature 342: 705–708, 1989

    Google Scholar 

  7. Mowat MA, Cheng A, Kimura N, Bernstein A, Benchimol S: Rearrangements in the cellularp53 gene in erythroleukemic cells transformed by friend virus. Nature 314: 633–636, 1985

    Google Scholar 

  8. Oliner JD, Kinzler KW, Metzler PS, George DL, Vogelstein B: Amplification of a gene encoding ap53 associated protein in human sarcomas. Nature 358: 80–83, 1992

    Google Scholar 

  9. Halevy O, Michaloviitz D, Oren M: Different tumor-derivedp53 mutants exhibit distinct biological activities. Science 250: 113–116, 1990

    Google Scholar 

  10. Malkin D, Li FP, Strong LC, Fraumeni JF, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, Friend SH: Germ linep53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science 250: 1233–1238, 1990

    Google Scholar 

  11. Srivastava S, Zou Z, Pirollo K, Blattner W, Chang EH: Germline transmission of a mutatedp53 gene in a cancerprone family with Li-Fraumeni syndrome. Nature 348: 747–749, 1990

    Google Scholar 

  12. Bischoff JR, Friedman PN, Marshak DR, Prives C, Beach D: Humanp53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc Natl Acad Sci USA 87: 4766–4770, 1990

    Google Scholar 

  13. Meek DW, Simon S, Kikkawa U, Eckhart W: Thep53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J 9: 3253–3260, 1990

    Google Scholar 

  14. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW: Participation ofp53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311, 1991

    Google Scholar 

  15. Marshall CJ: Tumour suppressor genes. Cell 313–326, 1991

  16. Naysmith K, Hunt T: Cell cycle: Dams and sluices. Nature 366: 634–635, 1993

    Google Scholar 

  17. Lavigueur A, Maltby V, Mock D, Rossant J, Pawson T, Bernstein A: High incidence of lung, bone and lymphoid tumours in transgenic mice overexpressing mutant alleles of thep53 oncogene. Mol Cell Biol 9: 3982–3991, 1989

    Google Scholar 

  18. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Butel JS, Bradley A: Mice deficient forp53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221, 1992

    Google Scholar 

  19. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH: Thymocyte apoptosis induced byp53-dependent and independent pathways. Nature 362: 849–852, 1993

    Google Scholar 

  20. Harvey M, McArthur MJ, Montgomery CA, Bradley A, Donehower LA: Genetic background alters the spectrum of tumours that develop inp53-deficient mice. FASEB 7: 938–943, 1993

    Google Scholar 

  21. Harvey M, McArthur MJ, Montgomery CA, Butel JS, Bradley A, Donehower LA: Spontaneous and carcinogen-induced tumorigenesis inp53-deficient mice. Nature Genetics 5: 225–229, 1993

    Google Scholar 

  22. Purdie CA, Harrison DJ, Peter A, Dobbie L, White S, Howie SEM, Salter DM, Bird CC, Wyllie AH, Hooper ML, Clarke AR: Tumour incidence, spectrum and ploidy in mice with a large deletion in thep53 gene. Oncogene 9: 603–609, 1994

    Google Scholar 

  23. Jacks T, Remington L, Williams BO, Schmitt EM, Halamachi S, Bronson RT, Weinberg RA: Tumour spectrum analysis inp53-mutant mice. Current Biology 4: 1–7, 1994

    Google Scholar 

  24. Tsukada Tomooka Y, Takai S, Ueda Y, Nishikawa S-I, Yagi T, Tokunaga T, Takeda N, Suda Y, Abe S, Matsuo I, Ikawa Y, Aizawa S: Enhanced proliferative potential in culture of cells fromp53-deficient mice. Oncogene 8: 3313–3322, 1993

    Google Scholar 

  25. Kemp CJ, Donehower LA, Bradley A, Balmain A: Reduction ofp53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumours. Cell 74: 813–822, 1993

    Google Scholar 

  26. Hecker E, Fusenig NE, Kunz W, Marks F, Thielmann HW: Carcinogenesis: A comprehensive survey. Volume 7. Cocarcinogenesis and biological effects of tumour promoters (New York: Raven Press), 1982

    Google Scholar 

  27. Balmain A, Kemp CJ, Burns PA, Stoler AB, Fowlis DJ, Akhurst RJ: Functional loss of tumour suppressor genes in multistage carcinogenesis. In: Harris CC, Hirohashi S, Ito N, Pitot HC, Sugimura T, Terada M, Yokota J (eds) Multistage carcinogenesis. Boca Raton, FL: Japan Scientific Society Press/CRC Press) 97–108, 1992

    Google Scholar 

  28. Furstenberger G, Schurich B, Kaina B, Petrusevska RT, Fusenig NE, Marks F: Tumour induction in initiated mouse skin by phorbol esters and methyl methanosulphonate: Correlation between chromosomal damage and conversion (‘Stage 1 of Tumour Promotion’)in vivo. Carcinogenesis 10: 749–752, 1989

    Google Scholar 

  29. Strasser A, Harris AH, Jacks T, Cory S: DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 79: 329–339, 1994

    Google Scholar 

  30. Kastan MB, Zhan Q, El-Diery WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ: A mammalian cell cycle checkpoint pathway utilisingp53 and GADD45 is defective in Ataxia-Telangiectasia. Cell 71: 587–597, 1992

    Google Scholar 

  31. Todaro GJ, Green H: Quantitative studies of the growth of mouse embryos in culture and their development into established lines. J Cell Biol 17: 299–313, 1963

    Google Scholar 

  32. Harvey M, Sands AT, Weiss RS, Hegi ME, Wiseman RW, Pantazis P, Giovanella BC, Tainsky MA, Bradley A, Donehower LA:In vitro growth characteristics of embryo fibroblasts isolated fromp53-deficient mice. Oncogene 8: 2457–2467, 1993

    Google Scholar 

  33. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD: Altered cell cycle arrest and gene amplification potential accompany loss of wild-typep53. Cell 70: 923–935, 1992

    Google Scholar 

  34. Raff MC: Social controls on cell survival and cell death. Nature 356: 397–400, 1992

    Google Scholar 

  35. Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. B J Cancer 26: 239–257, 1972

    Google Scholar 

  36. Arends MJ, Wyllie AH: Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol 32: 223–254, 1991

    Google Scholar 

  37. Bursch W, Paffe S, Putz B, Barthel G, Schulte-Hermann R: Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats. Carcinogenesis 11: 847–853, 1990

    Google Scholar 

  38. Howie SE, Sommerfield AJ, Gray E, Harrison DJ: Peripheral T lymphocyte depletion by apoptosis after CD4 ligationin vivo: selective loss of CD44 and ‘activating’ memory T cells. Clin Exp Immunol 95: 195–200, 1994

    Google Scholar 

  39. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M: Nature 352: 345–347, 1991

    Google Scholar 

  40. Lowe SW, Schmitt ES, Smith SW, Osborne BA, Jacks T:P53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849, 1993

    Google Scholar 

  41. Iseki R, Mukai M, Iwata M: Signals for the antagonism between activation - and glucocorticoid - induced death. J Immun 147: 4286–4292, 1991

    Google Scholar 

  42. Lotem J, Sachs L: Haematopoietic cells from mice deficient in wild-typep53 are more resistant to induction of apoptosis by some agents. Blood 82: 1092–1096, 1993

    Google Scholar 

  43. Fritsche M, Haessler C, Brandner G: Induction of nuclear accumulation of the tumour suppressor proteinp53 by DNA damaging agents. Oncogene 8: 307–318, 1993

    Google Scholar 

  44. Lowe SW, Ruley HE: Stabilization of thep53 tumour suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes and Development 7: 535–545, 1993

    Google Scholar 

  45. Lowe SW, Ruley HE, Jacks T, Housman DE:p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967, 1993

    Google Scholar 

  46. Lowe SW, Jacks T, Housman DE, Ruley HE: Abrogation of oncogene-associated apoptosis allows transformation ofp53-deficient cells. Proc Natl Acad Sci USA 91: 2026–2030, 1994

    Google Scholar 

  47. Lee JM, Bernstein A:p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci USA 90: 5742–5746, 1993

    Google Scholar 

  48. Clarke AR, Gledhill S, Hooper ML, Bird CC, Wyllie AH:p53-dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following γ-irradiation. Oncogene 9: 1767–1773, 1994

    Google Scholar 

  49. Potten CS: A comprehensive study of the radiobiological response of the murine (BDF1) small intestine. Int J Radiat Biol 58: 925–973, 1990

    Google Scholar 

  50. Merritt AJ, Potten CS, Kemp CJ, Hickman JA, Balmain A, Lane DP, Hall PA: The role ofp53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal andp53 deficient mice. Cancer Res 54: 614–617, 1994

    Google Scholar 

  51. Keurbitz SJ, Plunkett BS, Walsh MV, Kastan MB: Wild typep53 is a cell cycle check-point determinant following irradiation. Proc Natl Acad Sci USA 89: 7491–7495, 1992

    Google Scholar 

  52. Rao L, Debbas M, Sabbatini P, Hockenberry D, Korsmeyer S: The adenovirus E1a proteins induce apoptosis, which is inhibited by the E1B 19 KDa and bcl-2 proteins. Proc Natl Acad Sci USA 89: 7742–7746, 1992

    Google Scholar 

  53. Wu X, Levine AJ:p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 91: 3602–3606, 1994

    Google Scholar 

  54. Painter RB: Int J Radiat Biol 49: 771–781, 1986

    Google Scholar 

  55. Lallev A, Anachova B, Russev G: Effect of ionizing radiation and topoisomerase II inhibitors on DNA synthesis in mammalian cells. Eur J Biochem 216: 177–181, 1993

    Google Scholar 

  56. Chawlinski S, Potten CS, Evans G: Double labelling with bromodeoxyuridine (BrdUrd) and 3Hthymidine (3HTdR) of proliferative cells in small intestinal epithelium in steady state and after irradiation cell. Tissue kinet 21: 317–329, 1988

    Google Scholar 

  57. Gallie BL, Ellsworth RM, Abramson DH, Phillips RA: Retinoma: spontaneous regression of retinoblastoma or benign manifestation of the mutation? Brit J Cancer 45: 513–521, 1982

    Google Scholar 

  58. Knudson AG: Proc Natl Acad Sci USA 68: 820–823, 1971

    Google Scholar 

  59. Cavanee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphee AL, Strong LC, White RL: Expression of recessive alleles by chromosomal mechanisms predisposing to retinoblastoma. Nature 305: 779–784, 1983

    Google Scholar 

  60. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643–646, 1986

    Google Scholar 

  61. Lee W-H, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY-HP: Human retinoblastoma susceptibility gene: cloning, identification and sequence. Science 235: 1394–1399, 1987

    Google Scholar 

  62. Huang HJ, Yee JK, Shew JY, Chen PL, Bookstein R, Friedmann T, Lee EY, Lee W-H: Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242: 1563–1566, 1988

    Google Scholar 

  63. Takahashi R, Hashimoto T, Xu H-J, Hu S-X, Matsui T, Miki T, Bigo-Marshall H, Aaronson SA, Benedict W: The retinoblastoma gene functions as a growth and tumor suppressor in human bladder carcinoma cells. Proc Natl Acad Sci USA 88: 5257–5261, 1991

    Google Scholar 

  64. Bookstein R, Shew J-Y, Chen P-L, Scully P, Lee W-H: Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 247: 712–715, 1990

    Google Scholar 

  65. T'Ang, Varley JM, Chackraboty S, Murphree AL, Fung TK: Structural rearrangement of the retinoblastoma gene in human breast carcinoma. Science 242: 263–266, 1988

    Google Scholar 

  66. Harbour JW, Lai SL, Whang Peng J, Gazdar AD, Minna JD, Kaye FJ: Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 241: 353–357, 1988

    Google Scholar 

  67. Horowitz JM, Yandell DW, Park S-H, Canning S, Whyte P, Buchovitch K, Harlow E, Weinberg RA, Dryja TP: Point mutational inactivation of the retinoblastoma antioncogene. Science 243: 937–940, 1989

    Google Scholar 

  68. Horowitz JM, Park S-H, Bogenmann E, Cheng J-C, Yandell DW, Kaye FJ, Minna JD, Dryja TP, Weinberg RA: Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumour cells. Proc Natl Acad Sci USA 87: 2775–2779, 1990

    Google Scholar 

  69. Bookstein R, Rio P, Madreperla SA, Hong F, Alfred C, Grizzle WE, Lee W-H: Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc Natl Acad Sci USA 87: 7762–7766, 1990

    Google Scholar 

  70. Furokawa Y, DeCaprio JA, Freedman A, Kanakura Y, Nakamura M, Ernst TJ, Livingstone DM, Griffin JD: Expression and state of phosphorylation retinoblastoma susceptibility gene product in cycling and noncycling human haematopoietic cells. Proc Natl Acad Sci USA 87: 2770–2774, 1990

    Google Scholar 

  71. Lee EY-HP, To H, Shew J-Y, Bookstein R, Scully P, Lee W-H: Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 241: 218–221, 1988

    Google Scholar 

  72. Lee W-H, Shew JY, Hong FD, Sery TW, Donoso LA, Young LJ, Bookstein R, Lee EY-HP: The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 329: 642–645, 1987

    Google Scholar 

  73. Hollingsworth RE, Hensey CE, Lee W-H: Retinoblastoma protein and the cell cycle. Curr Opin Genet Dev 3: 55–62, 1993

    Google Scholar 

  74. Mihara K, Cao X-R, Yen A, Chandler S, Driscoll B, Murphree AL, T'Ang A, Fung Y-KT: Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product. Science 246: 1300–1303, 1989

    Google Scholar 

  75. Zacksenhaus E, Bremner R, Jiang Z, Montgomery Gill R, Muncaster M, Sopta M, Phillips RA, Gallie BL: Unraveling the function of the retinoblastoma gene. Advances in cancer research 61: 115–141, 1993

    Google Scholar 

  76. Shirodkar S, Ewen M, DeCaprio JA, Morgan J, Livingston DM, Chittenden T: The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle-regulated manner. Cell 68: 157–166, 1992

    Google Scholar 

  77. Li Y, Graham C, Lacy S, Duncan AMV, Whyte P: The adenovirus E1A-associated 130-kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev 7: 2366–2377, 1993

    Google Scholar 

  78. Hannon GJ, Demetrick D, Beach D: Isolation of the Rbrelated p130 through its interaction with CDK2 and cyclins. Genes Dev 7: 2378–2391, 1993

    Google Scholar 

  79. Cobrinik D, Whyte P, Peeper DS, Jacks T, Weinberg RA: Cell cycle-specific association of E2F with the p130 E1A-binding protein. Genes Dev 7: 2392–2404, 1993

    Google Scholar 

  80. Cao L, Faha B, Dembski M, Tsai L-H, Harlow E, Dyson N: Independent binding of the retinoblastoma protein and p107 to the transcription factor E2F. Nature 355: 176–179, 1992

    Google Scholar 

  81. Szekely L, Jiang W-Q, Bulic-Jakus F, Rosen A, Ringertz N, Klein G, Wiman KG: Cell type and differentiation dependent heterogeneity in retinoblastoma protein expression in SCID mouse fetuses. Cell Growth Differ 3: 149–156, 1992

    Google Scholar 

  82. Bernards Ret al.: Structure and expression of the murine retinoblastoma gene and characterisation of its encoded protein. Proc Natl Acad Sci USA 86: 6474–6478, 1989

    Google Scholar 

  83. Clarke AR, Maandag ER, van Roon M, van der Lugt NMT, van der Valk M, Hooper ML, Berns A, te Riele H: Requirement for a functionalRb-1 gene in murine development. Nature 362: 849–851, 1992

    Google Scholar 

  84. Lee EY-HP, Chang C-Y, Hu N, Wang Y-CJ, Lai CC, Herrup K, Lee WH, Bradley A: Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359: 288–294, 1992

    Google Scholar 

  85. Jacks T, Fazeli A, Schmidt E, Bronson R, Goodell M, Weinberg R: Effects of an Rb mutation in the mouse. Nature 359: 295–300, 1992

    Google Scholar 

  86. Wong PMC, Chung SW, Chui DHK, Eaves CJ: Properties of the earliest clonogenic hematopietic precursors to appear in the developing murine yolk sac. Proc Natl Acad Sci USA 83: 3851–3854, 1986

    Google Scholar 

  87. Chen J, Gorman JR, Stewart V, Wiliams B, Jacks T, Alt WA: Generation of normal lymphocyte populations by Rb-deficient embryonic stem cells. Current Biology 3: 405–413, 1993

    Google Scholar 

  88. Maandag ECR, van der Valk M, Vlaar M, Feltkamp C, O'Brien J, van Roon MV, van der Lugt N, Berns A, te Riele H: Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J 13: 4260–4268, 1994

    Google Scholar 

  89. Williams BO, Schmitt EM, Remington L, Bronson RT, Albert DM, Weinberg RA, Jacks T: Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO J 13: 4251–4259, 1994

    Google Scholar 

  90. Lee EY-HP, Hu N, Shyng-Shiou FY, Cox LA, Bradley A, Lee W-H, Herrup K: Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes & Dev 8: 2008–2021, 1994

    Google Scholar 

  91. Hooper ML: The role of thep53 andRb-1 genes in cancer, development and apoptosis. J Cell Sci S18: 13–17 1994

    Google Scholar 

  92. Windle JJ, Albert DM, O'Brien JM, Marcus DM, Disteche CM, Bernards R, Mellon PL: Retinoblastoma in transgenic mice. Nature 343: 665–669, 1990

    Google Scholar 

  93. Williams BO, Remington L, Albert DM, Mukai S, Bronson RT, Jacks T: Cooperative tumorigenic effects of germline mutations in Rb andp53. Nature Genet 7: 480–484, 1994

    Google Scholar 

  94. Hu N, Gutsmann A, Herbert DC, Bradley A, Lee W-H, Lee Y-HP: HeterozygousRb-1 20/+ mice are predisposed to tumour of the pituitary gland with a nearly complete penetrance. Oncogene 9: 1021–1027, 1994

    Google Scholar 

  95. Harrison DJ, Hooper ML, Armstrong JF, Clarke AR: Effects of heterozygosity for theRb-1 tl9neo allele in the mouse. Oncogene 10: 1615–1620, 1995

    Google Scholar 

  96. Dryja TP, Mukai S, Petersen R, Rapaport JM, Walton D, Yandell DW: Parental origin of mutations of the retinoblastoma gene. Nature 339: 556–558, 1989

    Google Scholar 

  97. Zhu X, Dunn JM, Phillips RA, Goddard AD, Paton KE, Becker A, Gallie BL: Preferential germline mutation of the paternal allele in retinoblastoma. Nature 340: 312–313, 1989

    Google Scholar 

  98. Toguchida J, Ishizaki K, Sasaki MS, Nakamura Y, Ikenaga M, Kato M, Sugimot M, Kotoura Y, Yamamuro T: Preferential mutation of paternally derived RB gene as the initial event in sporadic osteosarcoma. Nature 338: 156–158, 1989

    Google Scholar 

  99. Hammang JP, Baetge EE, Behringer RR, Brinster RL, Palmiter RD, Messing A: Immortalised retinal neurons derived from SV40 T-antigen-induced tumours in transgenic mice. Neuron 4: 775–782

  100. Theuring F, Goetz W, Balling R, Korf H-W, Schulze F, Herken R, Gruss P: Tumorigenesis and eye abnormalities in transgenic mice expressing MSV-SV40 large T-antigen. Oncogene 5: 225–232, 1990

    Google Scholar 

  101. Korf H-W, Goetz W, Herken R, Theuring F, Gruss P, Schachenmayr W: S-antigen and rod-opsin immunoreactions in mid-line brain neoplasms of transgenic mice: similarities to pineal cell tumours and certain medulloblastomas in man. J Neuropath Exp Neurol 49: 424–437, 1990

    Google Scholar 

  102. Howes KA, Ransom N, Papermaster DS, Lasudry JGH, Albert DM, Windle JJ: Apoptosis or retinoblastoma: Alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence ofp53. Genes & Dev 8: 1300–1310, 1994

    Google Scholar 

  103. Pan H, Griep AE: Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumour suppressor gene function in development. Genes & Dev 8: 1285–1299, 1994

    Google Scholar 

  104. Morgenbesser SD, Williams BO, Jacks T, DePinho RA: P-53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371: 72–74, 1994

    Google Scholar 

  105. Symonds H, Krall L, Remington L, Saenz-Robies M, Lowe S, Jacks T, Van Dyke T:p53-dependent apoptosis suppresses tumor growth and progressionin vivo. Cell 78: 703–711, 1994

    Google Scholar 

  106. Kemp CJ, Wheldon T, Balmain A:p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nature Genetics 8: 66–69, 1994

    Google Scholar 

  107. Lee JM, Abrahamson JLA, Kandel R, Donehower LA, Bernstein A: Susceptibility to radiation-carcinogenesis and accumulation of chromosomal breakage inp53 deficient mice. Oncogene 9: 3731–3736, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, A.R. Murine models of neoplasia: functional analysis of the tumour suppressor genesRb-1 andp53 . Cancer Metast Rev 14, 125–148 (1995). https://doi.org/10.1007/BF00665796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665796

Key words

Navigation