Skip to main content
Log in

Transgenic mice and squamous multistage skin carcinogenesis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The use of animals models of human cancers has proved useful in the elucidation of molecular events which occur during tumour development. Mouse skin has been used as a model for human squamous cancer for a number of decades, and analysis of this model has identified a number of changes important for the evolution of malignancy. Transgenic mice offer a further avenue of advancement, allowing refinement of the model, and the ability to examine the consequences of individual eventsin vivo in greater detail. This article reviews the impact of transgenic approaches to our understanding of multistage squamous carcinogenesis in mouse skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams JM, Cory S: Transgenic models of tumor development. Science 254: 1161–1167, 1991

    Google Scholar 

  2. Fowlis DJ, Balmain A: Oncogenes and tumour suppressor genes in transgenic mouse models of neoplasia. Eur J Cancer 29A: 638–645, 1993

    Google Scholar 

  3. Fuchs E: Epidermal differentiation: the bare essentials. J Cell Biol 111: 2807–2814, 1990

    Google Scholar 

  4. Bickers DR, Lowy DR: Carcinogenesis: a fifty-year historical perspective. J Invest Dermatol 92: 121S-131S, 1989

    Google Scholar 

  5. Hecker E, Fusenig NE, Kunz W, Marks F, Thielmann HW: Carcinogenesis. A Comprehensive Survey. Vol 7. Cocarcinogenesis and biological effects of tumor promoters. Raven Press. New York. 1982

    Google Scholar 

  6. Van Duuren BL, Sivak A, Katz C, Seidman I, Melchionine S: The effect of aging and interval between primary and secondary treatment in two stage carcinogenesis in mouse skin. Cancer Res 35: 502–505, 1975

    Google Scholar 

  7. Stenback F, Petro R, Shubik P: Initiation and promotion at different ages and doses in 2200 mice. I. Methods and the apparent persistence of initiated cells. Br J Cancer 44: 1–14, 1981

    Google Scholar 

  8. Loehrke H, Schweizer J, Dedere E, Hesse B, Rosenkrantz G, Goerttler K: On the persistance of tumour initiation in two-stage carcinogenesis on mouse skin. Carcinogenesis 41: 771–774, 1983

    Google Scholar 

  9. Cotsarelis G, Sun TT, Lavker RM: Labeling-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61: 1329–1337, 1990

    Google Scholar 

  10. Rochat A, Kobayashi K, Barrandon Y: Location of stem cells of human hair follicles by clonal analysis. Cell 76: 1063–1073, 1994

    Google Scholar 

  11. Potten CS: The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet 7: 77–88, 1974

    Google Scholar 

  12. Morris RJ, Fischer SM, Slaga TJ: Evidence that a slowly cycling subpopulation of adult murine epidermal cells retains carcinogen. Cancer Res 46: 3061–3066, 1986

    Google Scholar 

  13. Miller SJ, Wei Z, Wilson C, Dzubow L, Sun T, Lavker RM: Mouse skin is particularly susceptible to tumor initiation during early anagen of the hair cycle: possible involvement of hair follicle stem cells. J Invest Dermatol 101: 591–594, 1993

    Google Scholar 

  14. Lavker RM, Miller S, Wilson C, Cotsarelis G, Wei Z, Yang J: Hair follicle stem cells: their location, role in hair cycle and involvement in skin tumor formation. J Invest Dermatol 101 (suppl): 16S-26S, 1993

    Google Scholar 

  15. Kawamura H, Strickland JE, Yuspa SH: Association of resistance to terminal differentiation with initiation of carcinogenesis in adult mouse epidermal cells. Cancer Res 45: 2748–2752, 1985

    Google Scholar 

  16. Kilkenny AE, Morgan D, Spangler EF, Yuspa SH: Correlation of initiating potency of skin carcinogens with potency to induce resistance to terminal differentiation in cultured mouse keratinocytes. Cancer Res 45: 2219–2225, 1985

    Google Scholar 

  17. Kulesz-Martin MF, Kilkenny AE, Holbrook KA, Digernes V, Yuspa SH: Properties of carcinogen altered mouse epidermal cells resistant to calcium-induced terminal differentiation. Carcinogenesis 4: 1367–1377, 1983

    Google Scholar 

  18. Yuspa SH, Morgan DL: Mouse skin cells resistant to terminal differentiation associated with initiation of carcinogenesis. Nature 293: 72–74, 1981

    Google Scholar 

  19. Bizub D, Wood AW, Skalka AM: Mutagenesis of the Ha-ras oncogene in mouse skin tumors induced by polycyclic aromatic hydrocarbons. Proc Natl Acad Sci USA 83: 6048–6052, 1986

    Google Scholar 

  20. Quintanilla M, Brown K, Ramsden M, Balmain A: Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322: 78–80, 1986

    Google Scholar 

  21. Balmain A, Ramsden M, Bowden GT, Smith J: Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature 307: 658–660, 1984

    Google Scholar 

  22. Balmain A, Pragnell IB: Mouse skin carcinomas inducedin vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature 303: 72–74, 1983

    Google Scholar 

  23. Brown K, Buchmann A, Balmain A: Carcinogen-induced mutations in the mouse c-Ha-ras gene provide evidence of multiple pathways for tumour progression. Proc Natl Acad Sci USA 87: 538–542, 1990

    Google Scholar 

  24. Nelson MA, Futscher BW, Kinsella T, Wymer J, Bowden GT: Detection of mutant Ha-ras genes in chemically initiated mouse skin epidermis before the development of benign tumours. Proc Natl Acad Sci USA 89: 6398–6402, 1992

    Google Scholar 

  25. Iannaccone PM, Weinberg WC, Deamant FD: On the clonal origin of tumors: a review of experimental models. Int J Cancer 39: 778–784, 1987

    Google Scholar 

  26. Winton DJ, Blount MA, Ponder BAJ: Polyclonal origin of mouse skin papillomas. Br J Cancer 60: 59–63, 1989

    Google Scholar 

  27. Nishizuka Y: Studies and perspectives of protein kinase C. Science 233: 305–312, 1986

    Google Scholar 

  28. Yuspa SH, Ben T, Hennings H, Lichti U: Divergent responses in epidermal basal cells exposed to the tumour promoter 12-O-decanoylphorbol-13-acetate. Cancer Res 42: 2344–2349, 1982

    Google Scholar 

  29. Dlugosz AA, Yuspa SH: Coordinate changes in gene expression which mark the spinous to granular cell transition in epidermis are regulated by protein kinase C. J Cell Biol 120: 217–225, 1993

    Google Scholar 

  30. Aldaz CM, Trono D, Larcher F, Slaga TJ, Conti CJ: Sequential trisomization of chromosomes 6 and 7 in mouse skin premalignant lesions. Mol Carcinog 2: 22–26, 1989

    Google Scholar 

  31. Kemp CJ, Fee F, Balmain A: Allelotype analysis of mouse skin tumours using polymorphic microsatellites: sequential genetic alterations on chromosomes 6, 7 and 11. Cancer Res 53: 6022–6027, 1993

    Google Scholar 

  32. Kinsella AR, Radman M: Tumour promoter induces sister chromatid exchanges: Relevance to mechanisms of carcinogenesis. Proc Natl Acad Sci USA 75: 6149–6153, 1978

    Google Scholar 

  33. Petrusevska RT, Furstenberger G, Marks F, Fusenig NE: Cytogenetic effects caused by phorbol ester tumor promoters in primary mouse keratinocyte cultures: correlation with the convertogenic activity of TPA in multistage skin carcinogenesis. Carcinogenesis 9: 1207–1215, 1988

    Google Scholar 

  34. Hennings H, Shores R, Wenk ML, Spangler EF, Tarone R, Yuspa SH: Malignant conversion of mouse skin tumours is increased by tumour initiators and unaffected by tumour promoters. Nature 304: 67–69, 1983

    Google Scholar 

  35. O'Connell JF, Klein-Szanto AJP, DiGiovanni DM, Fries JW: Enhanced malignant progression of mouse skin tumors by the free-radical generator benzoyl peroxide. Cancer Res 46: 2863–2865, 1986

    Google Scholar 

  36. O'Connell JF, Klein-Szanto AJP, DiGiovanni DM, Fries JW: Malignant progression of mouse skin papillomas treated with ethylnitrosourea. N-methyl-N'-nitro-N-nitrosoguanidine, or 12-O-tetradecanoylphorbol-13-acetate. Cancer Lett 30: 269–274, 1986

    Google Scholar 

  37. Scribner JD, Scribner NK, McKnight B, Mottet NK: Evidence for a new model of tumor progression from carcinogenesis and tumor promotion studies with 7-bromomethylbenz(a)anthracene. Cancer Res 43: 2034–2041, 1983

    Google Scholar 

  38. Hennings H, Shores R, Mitchell P, Spangler EF, Yuspa SH: Induction of papillomas with a high probability of conversion to malignancy. Carcinogenesis 6: 1607–1610, 1985

    Google Scholar 

  39. Fowlis DJ, Flanders KC, Duffie E, Balmain A, Akhurst RJ: Discordant TGF-β1 RNA and protein localisations during chemical carcinogenesis of the skin. Cell Growth Differ 3: 81–91, 1992

    Google Scholar 

  40. Glick AB, Kulkarni AB, Tennenbaum T, Hennings H, Flanders K, C., O'Reilly M, Sporn MB, Karlsson S, Yuspa SH: Loss of TGF-β expression in mouse epidermis and epidermal tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc Natl Acad Sci USA 90: 6076–6080, 1993

    Google Scholar 

  41. Tennenbaum T, Yuspa SH, Grover A, Castronovo V, Sobel ME, Yamada Y, De Luca LM: Extracellular matrix receptors and mouse skin carcinogenesis: altered expression linked to appearance of early markers of tumor progression. Cancer Res 52: 2966–2976, 1992

    Google Scholar 

  42. Tennenbaum T, Weiner AK, Belanger AJ, Glick AB, Hennings H, Yuspa SH: The suprabasal expression of α6β4 integrin is associated with a high risk for malignant progression in mouse skin carcinogenesis. Cancer Res 53: 4803–4810, 1993

    Google Scholar 

  43. Nischt R, Roop DR, Mehrel T, Yuspa SH, Rentrop M, Winter H, Schweizer J: Aberrant expression during twostage mouse skin carcinogenesis of a type I 47-kDa keratin, K13, normally associated with terminal differentiation of internal stratified epithelia. Mol Carcinog 1: 96–108, 1988

    Google Scholar 

  44. Gimenez Conti I, Aldaz CM, Vianchi AB, Roop DR, Slaga TJ, Conti CJ: Early expression of type I K13 keratin in the progression of mouse skin papillomas. Carcinogenesis 11: 1995–1999, 1990

    Google Scholar 

  45. Bremner R, Balmain A: Genetic changes in skin tumour progression: correlation between presence of a mutantras gene and loss of heterozygosity on mouse chromosome 7. Cell 61: 407–417, 1990

    Google Scholar 

  46. Burns PA, Kemp CJ, Gannon JV, Lane DP, Bremner R, Balmain A: Loss of heterozygosity and mutational alterations of the p53 gene in skin tumors of interspecific hybrid mice. Oncogene 6: 2363–2369, 1991

    Google Scholar 

  47. Kress S, Sutter C, Strickland PT, Mukhtar H, Schweizer J, Schwarz M: Carcinogen-specific mutational pattern in the p53 gene in ultraviolet B radiation-induced squamous cell carcinomas of mouse skin. Cancer Res 52: 6400–6403, 1992

    Google Scholar 

  48. Ruggeri B, Caamano J, Goodrow T, DiRado M, Bianchi A, Trono D, Conti CJ, Klein-Szanto AJP: Alterations of the p53 tumor suppressor gene during mouse skin tumor progression. Cancer Res 51: 6615–6621, 1991

    Google Scholar 

  49. Klein-Szanto AJP, Larcher F, Bonfil RD, Conti CJ: Multistage chemical carcinogenesis protocols produce spindle cell carcinomas of the mouse skin. Carcinogenesis 10: 2169–2172, 1989

    Google Scholar 

  50. Navarro P, Gomez M, Pizarro A, Gamallo C, Quintanilla M, Cano A: A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J Cell Biol 115: 517–533, 1991

    Google Scholar 

  51. Diaz-Guerra M, Haddow S, Bauluz C, Jorcano JL, Cano A, Balmain A, Quintanilla M: Expression of simple epithelial keratins in mouse epidermal keratinocytes harbouring Harvey-ras gene alterations. Cancer Res 52: 680–687, 1992

    Google Scholar 

  52. Buchman A, Ruggeri B, Klein-Szanto AJP, Balmain A: Progression of squamous carcinoma cells to spindle carcinomas of mouse skin is associated with an imbalance of H-ras alleles on chromosome 7. Cancer Res 51: 4097–4101, 1991

    Google Scholar 

  53. Stoler AB, Stenback F, Balmain A: The conversion of mouse skin squamous cell carcinomas to spindle cell carcinomas is a recessive event. J Cell Biol 122: 1103–1117, 1993

    Google Scholar 

  54. Greenhalgh DA, Rothnagel JA, Quintanilla MI, Orengo CC, Gagne TA, Bundman DS, Longley MA, Roop DR: Induction of Epidermal Hyperplasia, Hyperkeratosis, and Papillomas in Transgenic Mice by a Targeted v-Ha-ras Oncogene. Molecular Carcinogenesis 7: 99–110, 1993

    Google Scholar 

  55. Sellheyer K, Bickenbach JR, Rothnagel JA, Bundman D, Longley MA, Kreig T, Roche NS, Roberts AB, Roop DR: Inhibition of skin development by overexpression of transforming growth factor β1 in the epidermis of transgenic mice. Proc Natl Acad Sci USA 90: 5237–5241, 1993

    Google Scholar 

  56. Wang XJ, Greenhalgh DA, Eckhardt JN, Rothnagel JA, Roop DR: Epidermal expression of transforming growth factor-α in transgenic mice: induction of spontaneous and 12-O-tetradecanoylphorbol-13-acetate-induced papillomas via a mechanism independent of Ha-ras activation or over-expression. Molecular Carcinogenesis 10: 15–22, 1994

    Google Scholar 

  57. Greenhalgh DA, Rothnagel JA, Wang XJ, Quintanilla MI, Orengo CC, Bundman DS, Longley MA, Fisher C, Roop DR: Hyperplasia, hyperkeratosis and benign tumor production in transgenic mice by a targeted v-fos oncogene suggest a role forfos in epidermal differentiation and neoplasia. Oncogene 8: 2145–2157, 1993

    Google Scholar 

  58. Bailleul B, Surani MA, White S, Barton SC, Brown K, Blessing M, Jorcano J, Balmain A: Skin hyperkeratosis and papilloma formation in transgenic mice expressing aras oncogene from a suprabasal keratin promoter. Cell 62: 697–708, 1990

    Google Scholar 

  59. Werner S, Weinberg W, Liao X, Peters KG, Blessing M, Yuspa SH, Weiner RL, Williams LT: Targetted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organisation and differentiation. EMBO J 12: 2635–2643, 1993

    Google Scholar 

  60. Vassar R, Fuchs E: Transgenic mice provide new insights into the role of TGF-α during epidermal developmental and differentiation. Genes Dev 5: 714–727, 1991

    Google Scholar 

  61. Turksen K, Kupper T, Degenstein L, Williams I, Fuchs E: Interleukin 6: Insights to its function in skin by overexpression in transgenic mice. Proc Natl Acad Sci USA 89: 5068–5072, 1992

    Google Scholar 

  62. Cheng J, Turksen K, Yu Q, Schreiber H, Teng M, Fuchs E: Cachexia and graft-vs-host-disease-type skin changes in keratin promoter-driven TNF-α transgenic mice. Genes Dev 6: 1444–1456, 1992

    Google Scholar 

  63. Guo L, Yu Q, Fuchs E: Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice. EMBO J 12: 973–986, 1993

    Google Scholar 

  64. Albers KM, Wright DE, Davis BM: Overexpression of Nerve Growth Factor in Epidermis of Transgenic Mice Causes Hypertrophy of the Peripheral Nervous System. J Neurosci 14: 1422–1432, 1994

    Google Scholar 

  65. Arbeit JM, Munger K, Howley PM, Hanahan D: Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice. J Virol 68: 4358–4368, 1994

    Google Scholar 

  66. Wysolmerski JJ, Broadus AE, Zhou J, Fuchs E, Milstone LM, Philbrick WM: Overexpression of parathyroid hormone-related protein in the skin of transgenic mice interferes with hair follicle development. Proc Natl Acad Sci USA 91: 1133–1137, 1994

    Google Scholar 

  67. Missero C, Serra C, Stenn K, Dotto GP: Skin-specific expression of a truncated Ela oncoprotein binding to P105-Rb leads to abnormal hair follicle maturation without increased epidermal proliferation. J Cell Biol 121: 1109–1120, 1993

    Google Scholar 

  68. Blessing M, Nanney LB, King LE, Jones CM, Hogan BL: Transgenic mice as a model to study the role of TGF-β-related molecules in hair follicles. Genes Dev 7: 204–215, 1993

    Google Scholar 

  69. Tinsley JM, Fisher C, Searle PF: Abnormalities of epidermal differentiation associated with expression of the human papillomavirus type 1 early region in transgenic mice. J Gen Virol 73: 1251–1260, 1992

    Google Scholar 

  70. Leder A, Kuo A, Cardiff RD, Sinn E, Leder P: v-Ha-ras transgene abrogates the initiation step in mouse skin tumorigenesis: effects of phorbol esters and retinoic acid. Proc Natl Acad Sci USA 87: 9178–9182, 1990

    Google Scholar 

  71. Saitoh A, Kimura M, Takahashi R, Yokoyama M, Nomura T, Izawa M, Sekiya T, Nishimura S, Katsuki M: Most tumors in transgenic mice with human c-Ha-ras gene contained somatically activated transgenes. Oncogene 5: 1195–1200, 1990

    Google Scholar 

  72. Ishida Y, Nishi M, Taguchi O, Inaba K, Minato N, Kawaichi M, Honjo T: Effects of the deregulated expression of human interleukin-2 in transgenic mice. Int Immun 1: 113–120, 1989

    Google Scholar 

  73. Rich BE, Campos-Torres J, Tepper RI, Moreadith RW, Leder P: Cutaneous lymphoproliferation and lymphomas in interleukin 7 transgenic mice. J Exp Med 177: 305–316, 1993

    Google Scholar 

  74. Wilson JB, Weinberg W, Johnson R, Yuspa S, Levine AJ: Expression of the BNLF-1 oncogene of Epstein-Bar virus in the skin of transgenic mice induces hyperplasia and aberrant expression of keratin 6. Cell 61: 1315–1327, 1990

    Google Scholar 

  75. Vogel J, Hinrichs SH, Reynolds RK, Luciw PA, Jay G: The HIVtat gene induces dermal lesions resembling Kaposi's sarcoma in transgenic mice. Nature 335: 606–611, 1988

    Google Scholar 

  76. Dickie P, Ramsdell F, Notkins AL, Venkatesan S: Spontaneous and inducable epidermal hyperplasia in transgenic mice expressing HIV-1nef. Virology 197: 431–438, 1993

    Google Scholar 

  77. Leonard JM, Abramczuk JW, Pezen DS, Ruttlege R, Belcher JH, Hakim F, Shearer G, Lamperth L, Travis W, Fredrickson T, Notkins AL, Martin MA: Development of disease and viral recovery in transgenic mice containing HIV proviral DNA. Science 242: 1665–1670, 1988

    Google Scholar 

  78. Lambert PF, Pan H, Pitot HC, Liem A, Jackson M, Griep AE: Epidermal cancer associated with expression of human papillomavirus type 16 E6 and E7 oncogenes in the skin of transgenic mice. Proc Natl Acad Sci USA 90: 5583–5587, 1993

    Google Scholar 

  79. Vassar R, Rosenberg M, Ross S, Tyner A, Fuchs E: Tissuespecific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc Natl Acad Sci USA 86: 1563–1567, 1989

    Google Scholar 

  80. Byrne C, Fuchs E: Probing keratinocyte and differentiation specificity of the human K5 promoterin vitro and in transgenic mice. Mol Cell Biol 13: 3176–3190, 1993

    Google Scholar 

  81. Fuchs E, Esteves RA, Coulombe PA: Transgenic mice expressing a mutant keratin 10 gene reveal the likely genetic basis for epidermolytic hyperkeratosis. Proc Natl Acad Sci USA 89: 6906–6910, 1992

    Google Scholar 

  82. Greenhalgh DA, Quintanilla MI, Orengo CC, Barber JL, Eckhardt JN, Roop DR: Cooperation between v-fos and v-rasHA induces autonomous papillomas in transgenic epidermis but not malignant conversion. Cancer Research 53: 5071–5075, 1993

    Google Scholar 

  83. Hansen LA, Tennant R: Focal transgene expression associated with papilloma development in v-Ha-ras-transgenic TG.AC mice. Mol Carcinog 9: 143–154, 1994

    Google Scholar 

  84. Spalding JW, Momma J, Elwell MR, Tennant RW: Chemically induced skin carcinogenesis in a transgenic mouse line (TG-AC) carrying a v-Ha-ras gene. Carcinogenesis 14: 1335–1341, 1993

    Google Scholar 

  85. Ando K, Saitoh A, Hino O, Takahashi R, Kimura M, Katsuki M: Chemically induced forestomach papillomas in transgenic mice carry mutant human c-Ha-ras transgenes. Cancer Research 52: 978–982, 1992

    Google Scholar 

  86. Coffey RJJ, Derynck R, Wilcox JN, Bringman TS, Goustin AS, Moses HL, Pittelkow MR: Production and auto-induction of transforming growth factor-α in human keratinocytes. Nature 328: 817–820, 1987

    Google Scholar 

  87. Hashimoto Y, Tajima O, Hashiba H, Nose K, Kuroki T: Elevated expression of secondary, but not early responding genes to phorbol ester tumor promoters in papillomas and carcinomas of mouse skin. Mol Carcinog 3: 302–308, 1990

    Google Scholar 

  88. Reiss M, Stash EB, Vellucci VF, Zhou ZL: Activation of the autocrine transforming growth factor α pathway in human squamous carcinoma cells. Cancer Res 51: 6254–6262, 1991

    Google Scholar 

  89. Glick AB, Sporn MB, Yuspa SH: Altered regulation of TGF-β1 and TGF-α in primary keratinocytes and papillomas expressing v-Ha-ras. Mol Carcinog 4: 210–219, 1991

    Google Scholar 

  90. Pittelkow MR, Lindquist PB, Abraham RT, Graves DR, Derynck R, Coffey RJ: Induction of transforming growth factor α expression in human keratinocytes by phorbol esters. J Biol Chem 264: 5164–5171, 1989

    Google Scholar 

  91. Imamoto A, Beltran LM, DiGiovanni J: Evidence for autocrine/paracrine growth stimulation by transforming growth factor-α during the process of skin tumour promotion. Mol Carcinog 4: 52–60, 1991

    Google Scholar 

  92. Finzi E, Kilkenny A, Strickland JE, Balaschack M, Bringman T, Derynck R, Aaronson S, Yusa SH: TGF-α stimulates growth of skin papillomas by autocrine and paracrine mechanisms but does not cause neoplastic progression. Mol Carcinog 1: 7–12, 1988

    Google Scholar 

  93. Vassar R, Hutton ME, Fuchs E: Transgenic overexpression of transforming growth factor α bypasses the need for c-Ha-ras mutations in mouse skin tumorigenesis. Mol Cell Biol 12: 4643–4653, 1992

    Google Scholar 

  94. Dominey AM, Wang XJ, King LE, Jr., Nanney LB, Gagne TA, Sellheyer K, Longley MA, Rothnagel JA, Greenhalgh DA, Roop DR: Targeted overexpression of transforming growth factor α in the epidermis of transgenic mice elicits hyperplasia, hyperkeratosis, and spontaneous, squamous papillomas. Cell Growth Differ 4: 1071–1082, 1993

    Google Scholar 

  95. Fisher C, Byers MR, Iadarola MJ, Powers EA: Patterns of epithelial expression of Fos protein suggests important role in the transition from viable to cornified cell during keratinisation. Development 111: 253–258, 1991

    Google Scholar 

  96. Greenhalgh DA, Yuspa SH: Malignant conversion of murine squamous papilloma cell lines by transfection with thefos oncogene. Mol Carcinog 1: 134–143, 1988

    Google Scholar 

  97. Greenhalgh DA, Welty DJ, Player A, Yuspa SH: Two oncogenes, v-fos and v-ras, cooperate to convert normal keratinocytes to squamous cell carcinoma. Proc Natl Acad Sci USA 87: 643–647, 1990

    Google Scholar 

  98. Hansen LA, Tennant RW: Follicular origin of epidermal papillomas in v-Ha-ras transgenic TG.AC mouse skin. Proc Natl Acad Sci USA 91: 7822–7826, 1994

    Google Scholar 

  99. Janne J, Alhonen L, Leinonen P: Poyamines: from molecular biology to clinical applications. Ann Med 23: 241–259, 1991

    Google Scholar 

  100. Halmekyto M, Syrjanen K, Janne J, Alhonen L: Enhanced papilloma formation in response to skin tumor promotion in transgenic mice overexpressing the human ornithine decarboxylase gene. Biochem Biophys Res Comm 187: 493–497, 1992

    Google Scholar 

  101. Grossman RM, Kruweger J, Yourish F, Granelli-Piperno A, Murphy PD, May AT, Kupper TS, Sehgal P, Gottlieb AB: Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci USA 86: 6267–6371, 1989

    Google Scholar 

  102. Finch PW, Rubin JS, Miki T, Ron D, Aaranson S: Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 245: 752–755, 1989

    Google Scholar 

  103. Werner S, Peters KG, Longaker MT, Fuller-Pace F, Banda MJ, Williams LT: Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc Natl Acad Sci USA 89: 6896–6900, 1992

    Google Scholar 

  104. Coffey RJJ, Sipes NJ, Bascom CC, Graves Deal R, Pennington CY, Weissman BE, Moses HL: Growth modulation of mouse keratinocytes by transforming growth factors. Cancer Res 48: 1596–1602, 1988

    Google Scholar 

  105. Hennings H, Glick AB, Lowry DT, Krsmanovic LS, Sly LM, Yuspa SH: FVB/N mice; an inbred stain sensitive to the chemical induction of squamous cell carcinomas in the skin. Carcinogenesis 14: 2353–2358, 1993

    Google Scholar 

  106. Mann GB, Fowler KL, Gabriel A, Nice EC, Williams L, Dunn AR: Mice with a null mutation of the TGFα gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell 73: 249–261, 1994

    Google Scholar 

  107. Luetteke NC, Qiu TH, Peiffer RL, Oliver P, Smithies O, Lee DC: TGF α deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 73: 263–278, 1993

    Google Scholar 

  108. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N, Doetschman T: Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359: 693–699, 1992

    Google Scholar 

  109. Hu E, Mueller E, Oliviero S, Papaioannou VE, Johnson R, Spiegelman BM: Targeted disruption of the c-fos gene demonstrates c-fos-dependent and -independent pathways for gene expression stimulated by growth factors or oncogenes. EMBO J 13: 3094–3103, 1994

    Google Scholar 

  110. Glick AB, Kulkarni AB, Tennenbaum T, Hennings H, Flanders KC, Sporn MB, Karlsson S, Yuspa SH: Loss of expression of transforming growth factor β in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc Natl Acad Sci USA 90: 6076–6080, 1993

    Google Scholar 

  111. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Jr., Butel JS, Bradley A: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221, 1992

    Google Scholar 

  112. Kemp CJ, Donehower LA, Bradley A, Balmain A: Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74: 813–822, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, K., Balmain, A. Transgenic mice and squamous multistage skin carcinogenesis. Cancer Metast Rev 14, 113–124 (1995). https://doi.org/10.1007/BF00665795

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665795

Key words

Navigation