Skip to main content
Log in

Protective measurement and quantum reality

  • Published:
Foundations of Physics Letters

Abstract

It is shown that from the expectation values of obervables, which can be measured for a single system using protective measurements, the linear structure, inner product, and observables in the Hilbert space can be reconstructed. A universal method of measuring the wave function of a single particle using its gravitational field is given. Protective measurement is generalized to the measurement of a degenerate state and to many particle systems. The question of whether the wave function is real is examined, and an argument of Einstein in favor of the ensemble interpretation of quantum theory is refuted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Aharonov and L. Vaidman,Phys. Lett. A 178, 38 (1993).

    Google Scholar 

  2. Y. Aharonov, J. Anandan, and L. Vaidman,Phys. Rev. A 47, 4616 (1993).

    Google Scholar 

  3. L. I. Schiff,Quantum Mechanics (McGraw-Hill, New York, 1968), pp. 289–291.

    Google Scholar 

  4. W. G. Unruh, “The reality and measurement of the wave function,” unpublished.

  5. S. Kobayashi and K. Nomizu,Foundations of Differential Geometry, Vol. II (Wiley, New York, 1969).

    Google Scholar 

  6. J. Anandan,Found. Phys. 21, 1265 (1991), Sec. 6.

    Google Scholar 

  7. See, for example, D. Pedoe,An Introduction to Projective Geometry (Macmillan, New York, 1963), Chap. X.

    Google Scholar 

  8. D. N. Page and R. Geilker,Phys. Rev. Lett. 47, 979 (1981); J. Anandan, “Interference of geometries in quantum gravity,” to be published inJ. Gen. Rel. Gravit.

    Google Scholar 

  9. R. L. Forward,Proc. IRE 49, 892 (1961); K. S. Thorne, inNear Zero: New Frontiers of Physics (Freeman, New York, 1988), p. 573.

    Google Scholar 

  10. Y. Aharonov and D. Albert,Phys. Rev. D 21, 3316 (1980);Phys. Rev. D 24, 359 (1981).

    Google Scholar 

  11. A. Einstein, B. Podolsky, and R. Rosen,Phys. Rev. 47, 777 (1935).

    Google Scholar 

  12. N. D. Mermin, private communication.

  13. A. Einstein, inScientific Papers Presented to max Born (Oliver & Boyd, London, 1953).

    Google Scholar 

  14. M. Born,The Born-Einstein Letters (Walker, New York, 1971).

    Google Scholar 

  15. For detailed treatments of decoherence in the context of the measurement problem, see H. D. Zeh,Phys. Lett. A 172,189 (1993), and the references therein.

    Google Scholar 

  16. R. Penrose in300 Years of Gravity, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge,1987). R. Penrose,The Emperor's New Mind (Oxford University Press, Oxford, 1989), Chap. 8.

    Google Scholar 

  17. See, for example, J. Anandan,Phys. Rev. D 33, 2280 (1986).

    Google Scholar 

  18. C. Rovelli, Comment on the paper “Meaning of the wave function,” unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anandan, J. Protective measurement and quantum reality. Found Phys Lett 6, 503–532 (1993). https://doi.org/10.1007/BF00662803

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00662803

Key words

Navigation