Skip to main content
Log in

Enhanced metal-ceramic adhesion by sequential sputter deposition and pulsed laser melting of copper films on sapphire substrates

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A study is presented of the effect of pulsed XeCl (308 nm) laser treatment on the adhesion between sputter-deposited copper films and sapphire substrates. Laser treatment (LT) of individual 80 nm thick copper films results in adhesion enhancement, relative to the assputtered film for XeCl energy densities >0.35 J cm−2. Thicker (∼ 1μm), strongly adherent copper films can be built up by alternating discrete and sequential sputter deposition with pulsed laser irradiations carried out in air. This sequential process yields smooth films whose adherence, as measured by the scratch test, is a factor of more than two to three greater than for as-sputtered films. The only way to remove the copper layer after irradiation was by cutting through the sapphire. Although formation of a metal oxide is a common consequence of LT in air, adhesion tests reveal no significant effect of carrying out LT in oxidizing or reducing atmospheres. During the earliest stages of the sequential process, the laser-melted film tends to break into small clusters. It is concluded that this process is driven by a surface energy gradient generated by lateral thermal gradients in the melt. These gradients, in turn, are due to the early establishment of isolated regions of good bonding and thermal contact with the substrate. One of the characteristic features of the sequential process is that this good bonding, once established in a given region, is maintained throughout successive meltings of the region. Adhesion mechanisms under LT are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Karnowsky andW. B. Estill,Rev. Sci. Instrum. 35 (1964) 1324.

    Google Scholar 

  2. P. Benjamin andC. Weaver,Proc. Roy. Soc. (London) A254 (1960) 177.

    Google Scholar 

  3. J. E. Ritter Jr andM. S. Burton,Trans. Met. Soc. AIME 239 (1967) 21.

    Google Scholar 

  4. W. H. Sutton, Missile and Space Division of General Electric Co., final Report, Contract No. DA 36-034-ord- 3768Z, June 1964.

  5. M. Nicholas, R. R. D. Forgan andD. M. Poole,J. Mater. Sci. 3 (1968) 9.

    Google Scholar 

  6. M. Nicholas,ibid. 3 (1968) 571.

    Google Scholar 

  7. R. M. Pilliar andJ. Nutting,Phil. Mag. 16 (1967) 181.

    Google Scholar 

  8. S. V. Pepper,J. Appl. Phys. 47 (1976) 801.

    Google Scholar 

  9. Idem, ibid. 50 (1979) 8062.

    Google Scholar 

  10. J. E. E. Baglin andG. J. Clark,Nucl. Instrum. Meth. B7/8 (1985) 881.

    Google Scholar 

  11. E. D. Hondros, in “Science of Hard Materials”, edited by E. A. Almond, C. A. Brookes and R. Warren (Hilger, Bristol, England, 1986) p. 121.

    Google Scholar 

  12. J. E. E. Baglin, A. G. Schrott, R. D. Thompson, K. N. Tu andA. Segmuller,Nucl. Instrum. Meth. B19/20 (1987) 782.

    Google Scholar 

  13. C. W. White andM. J. Aziz, in “Surface Alloying by Ion, Electron and Laser Beams”, edited by L. E. Rehn, S. T. Picraux and H. Wiedersich (ASM, Metals Park, Ohio, 1987) p. 19.

    Google Scholar 

  14. “American Institute of Physics Handbook”, 3rd Edn. (McGraw Hill, New York, 1972).

  15. W. D. Kingery,J. Amer. Ceram. Soc. 37 (1954) 18.

    Google Scholar 

  16. G. E. Possin, H. G. Parks andS. W. Chiang, in “Laser and Electron-Beam Solid Interactions and Materials Processing”, MRS Symposia Proceedings, Vol. I, edited by J. F. Gibbons, L. D. Hess and T. W. Sigmon (North-Holland, New York, 1980) p. 73.

    Google Scholar 

  17. P. Benjamin andC. Weaver,Proc. Roy. Soc. (London) A254 (1960) 163.

    Google Scholar 

  18. C. Weaver,J. Vac. Sci. Technol. 12 (1975) 18.

    Google Scholar 

  19. M. T. Laugier,Thin Solid Films 76 (1981) 289.

    Google Scholar 

  20. A. J. Pedraza, M. J. Godbole, E. A. Kenik, D. H. Lowndes andJ. R. Thompson,J. Vac. Sci. Technol. A6(3) (1988) 1763.

    Google Scholar 

  21. G. Katz,Appl. Phys. Lett. 12 (1968) 161.

    Google Scholar 

  22. K. H. Johnson andS. V. Pepper,J. Appl. Phys. 53 (1982) 6634.

    Google Scholar 

  23. F. S. Ohuchi, R. H. French andR. V. Kasowski,J. Vac. Sci. Technol. A5 (1987) 1175.

    Google Scholar 

  24. A. M. M. Gadalla andJ. White,Trans. Brit. Ceram. Soc. 63 (1964) 39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedraza, A.J., Godbole, M.J., Lowndes, D.H. et al. Enhanced metal-ceramic adhesion by sequential sputter deposition and pulsed laser melting of copper films on sapphire substrates. J Mater Sci 24, 115–123 (1989). https://doi.org/10.1007/BF00660942

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00660942

Keywords

Navigation