Skip to main content
Log in

Thermal conductivity of niobium in the purely superconducting and normal states

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The thermal conductivity λ of four niobium samples has been measured between 1 and 10 K, both in the superconducting and normal states. The specimens differed in their crystal defect structures due to annealing at different temperatures (dislocations, grain boundaries) and, in one case, to subsequent fast neutron irradiation (dislocation loops). A procedure has been developed with which the electron and phonon contributions to the thermal conductivity can be separated with an accuracy not hitherto obtainable. All the samples proved to have the same energy gap at 0K:δ(0)=(1.95±0.02)kT c . The phonon conductivity in the superconducting stateλ s p has been compared with the formula of Bardeen, Rickayzen, and Tewordt extended for scattering mechanisms other than phonon-electron interaction. For the unirradiated samples at\({\text{T}} \lesssim 0.15T_{\text{c}} \), λ sp is proportional toT 2, showing that dislocations are mainly responsible for the phonon scattering. The results are qualitatively in agreement with the theory of Klemens, giving a rough indication that the grain boundaries may be considered as arrays of line dislocations. Dislocation loops introduced by the neutron irradiation turn out to behave like clusters of point defects. A second consequence of the irradiation is an enhancement of the original dislocation scattering term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. H. Kes, Thesis, Leiden, 1974.

  2. B. T. Geilikman and V. Z. Kresin,Usp. Fiz. Nauk. 99, 51 (1969) [English transl.,Soviet Phys.—Uspekhi 12, 620 (1970)].

    Google Scholar 

  3. D. M. Ginsberg and L. C. Hebel, inSuperconductivity, R. D. Parks, ed., (Marcel Dekker, New York, 1969), p. 229.

    Google Scholar 

  4. J. Bardeen, G. Rickayzen, and L. Tewordt,Phys. Rev. 113, 982 (1959).

    Google Scholar 

  5. A. K. Gupta and S. Wolf,Phys. Rev. B 6, 2595 (1972).

    Google Scholar 

  6. A. K. Gupta, S. Wolf, and B. S. Chandrasekhar,Phys. Letters 41A, 265 (1972).

    Google Scholar 

  7. L. Tewordt,Phys. Rev. 129, 657 (1963).

    Google Scholar 

  8. D. Pines,Phys. Rev. 109, 280 (1958).

    Google Scholar 

  9. J. B. Lousa,J. Phys. C 2, 629 (1969).

    Google Scholar 

  10. P. G. Klemens and L. Tewordt,Rev. Mod. Phys. 36, 118 (1964).

    Google Scholar 

  11. A. Calverley, K. Mendelssohn, and P. M. Rowell,Cryogenics 2, 26 (1961).

    Google Scholar 

  12. A. C. Anderson and S. C. Smith,J. Phys. Chem. Solids 34, 111 (1973).

    Google Scholar 

  13. A. Connolly and K. Mendelssohn,Proc. Roy. Soc. (London)A 266, 429 (1962).

    Google Scholar 

  14. B. B. Goodman and G. Kuhn,J. de Phys. 29, 240 (1968).

    Google Scholar 

  15. P. G. Klemens,Solid State Phys. 7, 1 (1958).

    Google Scholar 

  16. J. W. Metselaar, H. A. Jordaan, J. W. Schutter, and D. de Klerk,Cryogenics 10, 220 (1970).

    Google Scholar 

  17. L. Dubeck and K. S. L. Setty,Phys. Letters 27A, 334 (1968).

    Google Scholar 

  18. P. H. Kes, C. A. M. van der Klein, and D. de Klerk,Cryogenics 14, 168 (1974).

    Google Scholar 

  19. G. E. Forsythe,J. Soc. Ind. Appl. Math. 5, 74 (1957).

    Google Scholar 

  20. J. S. Blakemore, J. W. Schultz, and J. G. Myers,Rev. Sci. Instr. 33, 545 (1962).

    Google Scholar 

  21. L. J. Neuringer, A. J. Perlman, L. G. Rubin, and Y. Shapira,Rev. Sci. Instr. 42, 9 (1971).

    Google Scholar 

  22. C. A. M. van der Klein, J. D. Elen, R. Wolf, and D. de Klerk,Physica 49, 98 (1970).

    Google Scholar 

  23. C. A. M. van der Klein, P. H. Kes, and D. de Klerk,Phil. Mag. 29, 559 (1974).

    Google Scholar 

  24. C. A. M. van der Klein, P. H. Kes, H. van Beelen, and D. de Klerk,J. Low. Temp. Phys. 16, 169 (1974).

    Google Scholar 

  25. J. D. Elen, G. Hamburg, and A. Mastenbroek,J. Nucl. Mat. 39, 194 (1971).

    Google Scholar 

  26. D. H. Finnemore, T. F. Stromberg, and C. A. Swenson,Phys. Rev. 149, 231 (1966).

    Google Scholar 

  27. B. J. C. van der Hoeven and P. H. Keesom,Phys. Rev. 134, A 1320 (1964).

    Google Scholar 

  28. M. J. Lea and E. R. Dobbs,Phys. Letters 45A, 39 (1973).

    Google Scholar 

  29. E. M. Forgan and G. E. Gough,J. Phys. F3, 1596 (1973).

    Google Scholar 

  30. F. Carsey, A. Kagiwada, M. Levy, and K. Maki,Phys. Rev. B 4, 854 (1971).

    Google Scholar 

  31. A. B. Pippard,J. Phys. Chem. Solids 3, 175 (1957).

    Google Scholar 

  32. G. K. White,Cryogenics 2, 292 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communication No. 410b from the Kamerlingh Onnes Laboratorium. Most of this work has already been reported in the thesis of one of the authors.1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kes, P.H., Rolfes, J.G.A. & de Klerk, D. Thermal conductivity of niobium in the purely superconducting and normal states. J Low Temp Phys 17, 341–364 (1974). https://doi.org/10.1007/BF00659079

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659079

Keywords

Navigation