Skip to main content
Log in

Thermal boundary resistance at interfaces between sapphire and indium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Kapitza thermal boundary resistanceR K has been measured above 1 K on several sapphire-indium boundaries prepared with different methods. By vapor-deposition of indium on sapphire and subsequent cold-welding with bulk indium, reproducible results were obtained. With the indium superconducting, we foundR KT −3 within a certain temperature range, andR K(1K)=42–44 and 30–36 cm2 K/W for polished and rough sapphire surfaces, respectively. The calculation according to the acoustic mismatch theory yieldsR K(1K)≈20 cm2 K/W. Samples prepared by ultrasonic soldering also follow the relationR KT −3 approximately, and giveR K(1K)=14–17 cm2 K/W. However, it is doubtful whether the calculation presuming a smooth boundary can be applied to the latter samples. Furthermore, we found that the method of vapor deposition and subsequent pouring on molten indium does not give good contacts. Moreover, the electronic contribution to the heat transfer across the boundary has been proved by ruling out other effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Kapitza,Collected Papers of P. L. Kapitza, D. ter Haar, ed. (Pergamon Press, Oxford, (1967), Vol. II, p. 581.

    Google Scholar 

  2. L. J. Challis,J. Phys. C 7, 481 (1974).

    Google Scholar 

  3. G. L. Pollack,Rev. Mod. Phys. 41, 48 (1969); N. S. Snyder, National Bureau of Standards, Technical Note 385 (1969).

    Google Scholar 

  4. I. M. Khalatnikov,Zh. Eksp. Theor. Fiz. 22, 687 (1952).

    Google Scholar 

  5. A. C. Anderson and W. L. Johnson,J. Low Temp. Phys. 7, 1 (1972).

    Google Scholar 

  6. R. E. Peterson and A. C. Anderson,J. Low Temp. Phys. 11, 639 (1973).

    Google Scholar 

  7. H. Haug and K. Weiss,Phys. Lett. A 40, 19 (1972).

    Google Scholar 

  8. J. L. Opsal and G. L. Pollack,Phys. Lett. 46A, 465 (1974).

    Google Scholar 

  9. J. C. A. van der Sluijs, E. A. Jones, and A. E. Alnaimi,Cryogenics 14, 95 (1974).

    Google Scholar 

  10. W. A. Little,Can. J. Phys. 37, 334 (1959).

    Google Scholar 

  11. D. A. Neeper and J. R. Dillinger,Phys. Rev. 135A, 1028 (1964).

    Google Scholar 

  12. M. W. Wolfmeyer, G. T. Fox, and J. R. Dillinger,Phys. Letters 31A, 401 (1970).

    Google Scholar 

  13. B. S. Park and Y. Narahara,J. Phys. Soc. Japan 30, 760 (1971).

    Google Scholar 

  14. C. Schmidt,Phys. Letters 50A, 241 (1974).

    Google Scholar 

  15. C. Schmidt,J. Appl. Phys. 46, 1372 (1975); L. J. Barnes and J. R. Dillinger,Phys. Rev. 141, 615 (1966).

    Google Scholar 

  16. S. G. O'Hara and A. C. Anderson,J. Phys. Chem. Solids 35, 1677 (1974).

    Google Scholar 

  17. K. W. Garrett and H. M. Rosenberg,J. Phys. D 7, 1247 (1974).

    Google Scholar 

  18. C. Schmidt,Cryogenics 15, 17 (1975).

    Google Scholar 

  19. C. Schmidt, Dissertation, Kernforschungszentrum Karlsruhe, Report No. 2030 (1974).

  20. W. M. Wolfmeyer and J. R. Dillinger,Phys. Letters 34A, 247 (1971).

    Google Scholar 

  21. R. Berman, E. L. Foster, and J. M. Ziman,Proc. Roy. Soc. 220, 171 (1953).

    Google Scholar 

  22. R. Berman,Nature 182, 1661 (1958).

    Google Scholar 

  23. I. N. Adamenko and I. M. Fuks,Soviet Phys.—JETP 32, 1123 (1971).

    Google Scholar 

  24. R. E. Peterson, Ph.D. thesis, University of Illinois, 1972 (unpublished).

  25. B. T. Bernstein,J. Appl. Phys. 34, 169 (1963).

    Google Scholar 

  26. B. S. Chandrasekhar and J. A. Rayne,Phys. Rev. 124, 1011 (1961).

    Google Scholar 

  27. L. J. Challis, K. Dransfeld, and J. Wilks,Proc. Roy. Soc. A 260, 31 (1960).

    Google Scholar 

  28. W. A. Little,Phys. Rev. 123, 435 (1961).

    Google Scholar 

  29. J. D. N. Cheeke,Cryogenics 10, 463 (1970).

    Google Scholar 

  30. P. Lindenfels and H. Rohrer,Phys. Rev. 139A, 206 (1965).

    Google Scholar 

  31. E. S. Bliss and J. A. Rayne,Phys. Letters 23, 38 (1966).

    Google Scholar 

  32. H. Van Kempen, H. N. DeLang, J. S. Lass, and P. Wyder,Phys. Letters 42A, 277 (1972).

    Google Scholar 

  33. L. J. Challis and R. A. Sherlock,J. Phys. C 3, 1193 (1970).

    Google Scholar 

  34. F. Wagner, F. J. Kollarits, and M. Yagub,Phys. Rev. Letters 32, 1117 (1974); F. Wagner and M. Yagub,Phys. Kond. Mat. 19, 337 (1975).

    Google Scholar 

  35. F. W. Sheard, R. M. Bowley, and G. A. Toombs,Phys. Rev. A 8, 3135 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, C., Umlauf, E. Thermal boundary resistance at interfaces between sapphire and indium. J Low Temp Phys 22, 597–611 (1976). https://doi.org/10.1007/BF00659062

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659062

Keywords

Navigation