Skip to main content
Log in

A model for the thermodynamic properties of metallic rare earth systems with an unstable valence

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Rare earth compounds and alloys were regarded for many years as classic examples of ionic magnetism in a solid. Due to the limited spatial extent of the 4f wave functions, the 4f electrons do not significantly participate in the chemical bonding, and hence retain most of their ionic character during the transition from a gas to a solid. However, recent experimental evidence on several metallic rare earth systems indicated an apparent loss of the ionic magnetic moment. Extensive measurements on these systems of the magnetic susceptibility, lattice constant, Mössbauer isomer shift, x-ray photoelectron spectrum, and heat capacity can be qualitatively understood if one postulates (as was first done by Maple and Wohlleben using a model due to Hirst) that the rare earth ion fluctuates between two ionic configurations (valence states) which differ in occupation number by one electron (4f n, 4f n−1 5d 1). We propose to quantify this simple idea by assigning each valence configuration a finite lifetime atT=0. The two lifetimes τ n and τ n−1 are converted to “bands” with widthsh n andh n−1 . The states in each “band,” however, are forced to retain the ionic properties as determined from Hund's rules. The temperature-dependent contribution of the 4f shell to the magnetic susceptibility, heat capacity, and thermal expansion coefficient is then numerically computed using Fermi-Dirac statistics. By varying τ n and τ n−1 it is possible to quantitatively describe “different” types of magnetic behavior: integral valence (τ n =∞, τ n−1 =h/Δ), configuration crossover (τ n n−1 ), and Kondo phenomena (τ n n−1 ). The results of the model are compared to three well-studied rate earth systems with unstable valence: YbAl 3 , CePd 3 , and (LaCe)Al 2 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Van Vleck,Electric and Magnetic Susceptibilities (Oxford University Press, London, 1932).

    Google Scholar 

  2. M. A. Ruderman and C. Kittel,Phys. Rev. 96, 99 (1954).

    Google Scholar 

  3. T. Kasuya,Prog. Theor. Phys. (Kyoto)16, 45 (1956).

    Google Scholar 

  4. K. Yoshida,Phys. Rev. 106, 893 (1957).

    Google Scholar 

  5. L. L. Hirst,Phys. Kondens. Mater. 11, 255 (1970).

    Google Scholar 

  6. D. K. Wohlleben and B. R. Coles, inMagnetism, Vol. 5, H. Suhl, ed. (Academic Press, New York, 1973), Chapter 1.

    Google Scholar 

  7. M. B. Maple and D. K. Wohlleben, inMagnetism and Magnetic Materials—1974, C. D. Graham, Jr., and J. J. Rhyne, eds. (AIP Conf. Proc. No. 18, Boston, 1973), pp. 447–462.

  8. C. M. Varma,Rev. Mod. Phys. 48, 219 (1976).

    Google Scholar 

  9. L. L. Hirst,J. Phys. Chem. Solids 35, 1285 (1974).

    Google Scholar 

  10. B. C. Sales and R. Viswanathan,J. Low Temp. Phys. 23, 449 (1976).

    Google Scholar 

  11. L. L. Hirst,Phys. Rev. Lett. 35, 1394 (1975).

    Google Scholar 

  12. J. F. Herbst, D. N. Lowy, and W. E. Watson,Phys. Rev. B 6, 1913 (1972).

    Google Scholar 

  13. Y. Baer and G. Busch, inProceedings of the International Conference on Electron Spectroscopy, Namur, Belgium, April 1974.

  14. G. Grüner and N. F. Mott,J. Phys. F 4, L16 (1974).

  15. D. I. Khomskii and A. N. Kocharjan,Solid State Commun. 18, 985 (1976).

    Google Scholar 

  16. A. Iandelli and A. Palenzona,J. Less-Common Met. 29, 293 (1972).

    Google Scholar 

  17. E. R. Bauminger, D. Froindlich, I. Nowik, S. Ofer, I. Felner, and I. Mayer,Phys. Rev. Lett. 30, 1053 (1973).

    Google Scholar 

  18. J. C. Nickerson, R. M. White, K. N. Lee, R. Bachmann, T. H. Geballe, and G. W. Hull, Jr.,Phys. Rev. B 3, 2030 (1971).

    Google Scholar 

  19. J. G. Huber, J. Brooks, D. K. Wohlleben, and M. B. Maple, inMagnetism and Magnetic Materials—1974, C. D. Graham, Jr., G. H. Lander, and J. J. Rhyne, eds. (AIP Conf. Proc. No. 24, San Francisco, 1975), pp. 475–476.

  20. J. M. Lawrence, M. C. Croft, and R. D. Parks,Phys. Rev. Lett. 35, 289 (1975).

    Google Scholar 

  21. B. C. Sales, Ph.D. Thesis, University of California at San Diego, La Jolla, California (1974), unpublished.

  22. E. E. Havinga, K. H. J. Buschow, and H. H. Van Daal,Solid State Commun. 13, 621 (1973).

    Google Scholar 

  23. K. H. J. Buschow and J. F. Fast,Z. Phys. Chem. Frankfurt 50, 1 (1966).

    Google Scholar 

  24. W. E. Gardner, J. Penfold, T. F. Smith, and I. R. Harris,J. Phys. F 2, 133 (1972).

    Google Scholar 

  25. E. Holland-Moritz, M. Loewenhaupt, W. Schmatz, and D. Wohlleben, inMagnetism and Magnetic Materials—1976 (AIP Conf. Proc., Pittsburgh, Pennsylvania, to be published).

  26. R. D. Hutchens, V. U. S. Rao, J. E. Greedan, and R. S. Craig,J. Phys. Soc. Japan 32, 451 (1972).

    Google Scholar 

  27. R. D. Hutchens, V. U. S. Rao, J. E. Greendan, W. E. Wallace, and R. S. Craig,J. Appl. Phys. 42, 1293 (1971).

    Google Scholar 

  28. G. Riblet and K. Winzer,Solid State Commun. 9, 1663 (1971).

    Google Scholar 

  29. M. B. Maple,Appl. Phys. 9, 197 (1976), and references cited therein.

    Google Scholar 

  30. B. C. Sales and D. K. Wohlleben,Phys. Rev. Lett. 35, 1240 (1975).

    Google Scholar 

  31. B. D. Rainford, Ph.D. Thesis, Oxford (1969), unpublished; quoted by R. W. Hill and J. M. Machado da Silva,Phys. Lett. 30A, 13 (1969).

  32. F. Steglich,Z. Phys. B23, 331 (1976).

    Google Scholar 

  33. S. D. Bader, N. E. Phillips, M. B. Maple, and C. A. Luengo,Solid State Commun. 16, 1263 (1975).

    Google Scholar 

  34. J. A. White, H. J. Williams, J. H. Wernick, and R. C. Sherwood,Phys. Rev. 131, 1039 (1963).

    Google Scholar 

  35. M. B. Maple, Ph.D. Thesis, University of California at San Diego, La Jolla, California (1969), unpublished.

    Google Scholar 

  36. K. R. Lea, M. J. M. Leask, and W. P. Wolf,J. Phys. Chem. Solids 23, 1381 (1962).

    Google Scholar 

  37. K. Andres, J. E. Graebner, and H. R. Ott,Phys. Rev. Lett. 35, 1779 (1975).

    Google Scholar 

  38. W. Felsch, K. Winzer, and G. V. Minnigerode,Z. Phys. 21B, 151 (1975).

    Google Scholar 

  39. E. Bucher, A. C. Gossard, K. Andres, J. P. Maita, and A. S. Cooper, inProceedings of the Eighth Rare Earth Conference, T. A. Henrie and R. F. Lindstrom, eds. (USGPO, Washington, D.C., 1970), pp. 74–79.

    Google Scholar 

  40. H. R. Ott, K. Andres, and E. Bucher, inMagnetism and Magnetic Materials—1974, C. D. Graham, Jr., G. H. Lander, and J. J. Rhyne, eds. (AIP Conf. Proc. No. 24, San Francisco, 1975), pp. 40–41.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed within the research program of the Sonderforschungbereich 125—Aachen/Jülich/Köln

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sales, B.C. A model for the thermodynamic properties of metallic rare earth systems with an unstable valence. J Low Temp Phys 28, 107–127 (1977). https://doi.org/10.1007/BF00658961

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00658961

Keywords

Navigation