Skip to main content
Log in

Tensile deformation of high strength and high modulus polyethylene fibers

  • Leading Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The influence of tensile deformation on gel-spun and hor-drawn ultra-high molecular weight polyethylene fibers has been investigated. In high modulus polyethylene fibers no deformation energy is used to break chemical bonds during deformation, and flow is predominantly present next to elastic behavior. Flow is reversible after tensile deformation to small strains, but becomes irreversible when yielding occurs.

Stress relaxation experiments were used to determine the elastic and flow contribution to tensile deformation. A simple quantitative relation could then be derived for the stress-strain curve that directly links yield stress to modulus. Experimental stress-strain curves could be reasonably described by this relation.

Flow during tensile deformation is shown to be correlated with the introduction of the hexagonal phase in crystalline domains. A mechanism of flow is proposed in which, at first, tie molecules or intercrystalline bridges are pulled out of crystalline blocks (reversible), followed by the break-up of crystalline blocks through slip of microfibrils past each other (stress-induced melting, irreversible).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalb B, Pennings AJ (1980) J Mat Sci 15:2584

    Google Scholar 

  2. Smith P, Lemstra PJ, Kalb B, Pennings AJ (1979) Polym Bull 1:733

    Google Scholar 

  3. Smook J, Flintermann M, Pennings AJ (1980) Polym Bull 2:775

    Google Scholar 

  4. Hoogsteen W, Kormelink H, Eshuis G, ten Brinke G, Pennings AJ (1988) J Mat Sci 23:3467

    Google Scholar 

  5. Pennings AJ, Roukema M, van der Veen A (1990) Polym Bull 23:353

    Google Scholar 

  6. Zhurkov SN, Narzullayev BN (1953) Zhur Tekh Fiz 23:1677

    Google Scholar 

  7. Bueche F (1955) J Appl Phys 26:1133

    Google Scholar 

  8. Tobolsky A, Eyring H (1943) J Chem Phys 11:125

    Google Scholar 

  9. Kausch HH (1987) Polymer fracture, polymer/properties and applications 2, second ed. Springer Verlag, Berlin Heidelberg

    Google Scholar 

  10. Dijkstra DJ, Torfs JCM, Pennings AJ (1989) Colloid Polym Sci 267:886

    Google Scholar 

  11. Ferry JD (1970) Viscoelastic properties of polymers, second ed. John Wiley & Sons

  12. Pennings AS, van der Hooft RJ, Postema AR, Hoogsteen W, ten Brinke G (1986) Polym Bull 16:167

    Google Scholar 

  13. Krausz AS, Eyring H (1975) Deformation kinetics. John Wiley & Sons

  14. Wilding MA, Ward IM (1978) Polymer 19:969

    Google Scholar 

  15. Wilding MA, Ward IM (1981) Polymer 22:870

    Google Scholar 

  16. Smook J, Pennings AJ (1982) J Appl Polym Sci 27:2209

    Google Scholar 

  17. Frank O, Wendorff JH (1981) Colloid Polym Sci 259:1047

    Google Scholar 

  18. Frank O, Wendorff JH (1988) Colloid Polym Sci 266:216

    Google Scholar 

  19. Stoeckel TM, Blasius J, Crist B (1978) J Polm Sci Polym Phys Ed 16:485

    Google Scholar 

  20. Zwijnenburg A, Pennings AJ, unpublished results

  21. Hoogsteen W, ten Brinke G, Pennings AJ (1990) J Mat Sci 25:1551

    Google Scholar 

  22. Zhurkov SN, Zakrevskyi VA, Korsukov VE, Kuksenko VS (1972) J Polym Sci Parr A 2:10

    Google Scholar 

  23. Noether HD, Whitney W (1973) Kolloid Z Z Polym 251:991

    Google Scholar 

  24. Fanconi B, Rabolt JF (1985) J Polym Sci Polym Phys Ed 23:1201

    Google Scholar 

  25. Ward IM, Wilding MA (1984) J Polym Sci Polym Phys Ed 22:516

    Google Scholar 

  26. Kubát J, Seldén R, Righdahl M (1978) J Appl Polym Sci 22:1715

    Google Scholar 

  27. Kubát J (1979) Makromol Chem Suppl 3:233

    Google Scholar 

  28. Seldén R (1979) J Mat Sci 14:312

    Google Scholar 

  29. Hagström B, Kubát J, Rigdahl M (1988) J Appl Polym Sci 36:1375

    Google Scholar 

  30. Chang FSC (1964) J Appl Polym Sci 8:37

    Google Scholar 

  31. Williams JG (1973) Stress analysis of polymers. Longman, London

    Google Scholar 

  32. Buchdahl R (1958) J Polym Sci 28:239

    Google Scholar 

  33. Prevorsek DC (1966) J Polym Sci Part A 2 4:63

    Google Scholar 

  34. Kelly A, MacMillan NH (1986) Strong solids. Clarendon Press, Oxford

    Google Scholar 

  35. Schwartz P, Netravali A, Sembach S (1986) Text Res J 56:502

    Google Scholar 

  36. Kubát J (1965) Nature 205:378

    Google Scholar 

  37. White JR (1981) J Mat Sci 16:3249

    Google Scholar 

  38. Haworth B, White Jr (1981) J Mat Sci 16:3263

    Google Scholar 

  39. Pennings AJ, Zwijnenburg A (1979) J Polym Sci Polym Phys Ed 17:1011

    Google Scholar 

  40. Wunderlich B, Möller M, Grebowicz J, Bauer H (1988) Adv Polym Sci 87

  41. Ward IM, Wilding MA, Brody H (1976) J Polym Sci Polym Phys Ed 14:263

    Google Scholar 

  42. Jakeways R, Smith T, Ward IM, Wilding MA (1976) J Polym Sci Polym Lett Ed 14:41

    Google Scholar 

  43. Brereton MG, Davies GR, Jakeways R, Smith T, Ward IM (1978) Polymer 19:17

    Google Scholar 

  44. Niegisch WD (1966) J Appl Phys 37:4041

    Google Scholar 

  45. Kirkpatrick DE, Wunderlich B (1985) Makromol Chem 186:2595

    Google Scholar 

  46. Nachane RP, Hussain GFS, Patel GS, Krisha Iyer KR (1989) J Appl Polym Sci 38:21

    Google Scholar 

  47. McCullough RL, Eisenstein AJ, Weikart DF (1977) J Polym Sci Polym Phys Ed 15:1837

    Google Scholar 

  48. de Boer JH (1936) Trans Faraday Soc 32:10

    Google Scholar 

  49. Dijkstra DJ, Pennings AJ (1988) Polym Bull 19:73

    Google Scholar 

  50. Penning JP, van der Werff H, Roukema, M, Pennings AJ (1990) Polym Bull 23:347

    Google Scholar 

  51. Alamo RG, McLaughlin KW, Mandelkern L (1989) Polym Bull 22:299

    Google Scholar 

  52. Müller FH (1969) In: Eirich (ed) Rheology, vol 5, ch. 8 Wiley, New York

    Google Scholar 

  53. Godovsky YuK (1982) Colloid Polym Sci 260:461 and references therein

    Google Scholar 

  54. van der Werff H, Pennings AJ (1988) Polym Bull 19:587

    Google Scholar 

  55. Wunderlich B, Czorny G (1977) Macromolecules 10:906

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Werff, H., Pennings, A.J. Tensile deformation of high strength and high modulus polyethylene fibers. Colloid Polym Sci 269, 747–763 (1991). https://doi.org/10.1007/BF00657441

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00657441

Key words

Navigation