Skip to main content
Log in

Oxidation of Fe-8Cr-14Ni-Al-Si-Mn from 700 to 1000°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This paper reports an investigation into reducing the Cr concentration in commercial-grade stainless steels while maintaining oxidation protection at elevated temperatures. Aluminum and Si were added as partial substitute alloy elements to enhance the reduced operation protection resulting from Cr concentration reduced by approximately 50 pct of that found in stainless steels. The goal of this study was to determine the oxidation mechanism of such an Fe, Al-Si alloy: Fe-8Cr-14Ni-1Al-3.5Si-1Mn. During the initial oxidation period the protection resulted from a thin film of Al2O3 over an Fe and Cr spinel. Long-term oxidation protection resulted from the gradual formation of a Cr sesquioxide (Cr2O2) inner oxide layer. Eventually an outer oxide layer formed that was a mixed composition spinel of Cr and Mn (MnO · Cr2O3). The Al2O3, which was part of the original protective layer flaked off early in the oxide testing, and the aluminum oxide that formed later appeared as an internal oxide precipitate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Himmel, R. F. Mehl, and C. E. Birchenall, Self Diffusion of Iron in Iron Oxides and the Wagner Theory of Oxidation,Trans. AIME, J Met. XX, 827 (1953).

    Google Scholar 

  2. A. John, Sedriks,Corrosion of Stainless Steels (John Wiley and Sons, New York, 1979).

    Google Scholar 

  3. A. I. Kahveci and G. Welsch, High-Temperature Oxidation of Fe-3 wt pet Cr Alloy,Scripta Metall. 17, 121 (1983).

    Google Scholar 

  4. M. J. Graham, Thin Oxide Film Formation on Metals, High Temperature Corrosion. InInternational Corrosion Conference (NACE, Houston, TX, 1981), pp. 139–144.

    Google Scholar 

  5. W. E. Bogg, The High-Temperature Oxidation Resistance of Iron-Silicon-Aluminum Alloys,Oxid. Met. 10(4) 277–290 (1976).

    Google Scholar 

  6. S. Guruswamy, J. P. Hirth, and G. W. Powell, Oxidation Behavior of Fe-Si-Al Alloys at 1173–1373 K,Oxid. Met. 19(3/4), 77–98 (1983).

    Google Scholar 

  7. A. Kumar and D. L. Douglas, Modification of the Oxidation Behavior of High-Purity Austenitic Fe-14Cr-14Ni by the Addition of Silicon,Oxid. Met. 10(1), 1–22 (1970).

    Google Scholar 

  8. H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Weber, Influence of Silicon Additions on the Oxidation Resistance of a Stainless Steel,Oxid. Met. 19(1/2) 1–18 (1983).

    Google Scholar 

  9. R. G. Miner and V. Nagarajan, The Morphology of Oxidation of Alumina-Forming Iron-Base Chromium and Silicon,Oxid. Met. 16(3/4), 295–326 (1981).

    Google Scholar 

  10. A. Atkinson, M. L. O'Dwyer, and R. I. Taylor, Fe Diffusion in Magnetite Crystals at 550°C and its Relevance to Oxidation of Iron,J. Mat. Sci. 18, 2371 (1983).

    Google Scholar 

  11. T. E. Mitchell, D. A. Voss, and E. P. Butler, The Observation of Stress Effects During the High Temperature Oxidation of Iron,J. Mat. Sci. 17 1825 (1982).

    Google Scholar 

  12. O. Kubaschewski and B. E. Hopkins,Oxidation Metals and Alloys (Academic Press, Inc., London, 1953).

    Google Scholar 

  13. D. Caplan and M. Cohen,Nature 205, 690 (1965).

    Google Scholar 

  14. G. C. Wood and D. P. Whittle, Chromium Oxide Scale Growth on Iron-Chromium Alloys,J. Electrochem. Soc., Electrochemical Sci. 115(2), 126 (1968).

    Google Scholar 

  15. K. Ishiguro and T. Homma, Thin Oxide Films on a Ferritic and an Austenitic Alloy, InInternational Corrosion Conference (NACE, Houston, TX, 1981), pp. 28–34.

    Google Scholar 

  16. K. Kurroda, P. A. Labun, G. Welsch, and T. E. Mitchell, Oxide-Formation Characteristics in the Early Stages of Oxidation of Fe and Fe-Cr Alloys,Oxid. Met. 19(3/4), 117–128 (1983).

    Google Scholar 

  17. H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster, Influence of Silicon Additions on the Oxidation Resistance of a stainless Steel,Oxid. Met. 19(1/2), 1–18 (1983).

    Google Scholar 

  18. J. M. Francis, Influence of Minor Alloying Elements on Structure of Surface Oxides Forming During the High Temperature Oxidation of an Austenitic Steel,J. Iron and Steel Institute 910 (1966).

  19. G. C. Wood and F. H. Scott, The Development and Growth of Protection Alpha-Al2O3 Scales on Alloys, InInternational Corrosion Conference (NACE, Houston, TX, 1981), pp. 227–250.

    Google Scholar 

  20. P. Tomaszewicz and G. R. Wallwork, Development of Oxidation Resistant Fe-Al Alloys, High Temperature Corrosion, InInternational Corrosion Conference (NACE, Houston, TX, 1981), pp. 258–266.

    Google Scholar 

  21. D. Delaunay, A. M. Huntz, and P. Lacombe, Impurities Influence on Oxidation Kinetics of Fe-Ni-Cr-Al Alloys,Corr. Sci. 24(1), 13 (1984).

    Google Scholar 

  22. F. Fitzer and J. Schlicting, Coatings, Containing Aluminum and Silicon for High Temperature Alloys. High Temperature Corrosion, InInternational Corrosion Conference (NACE, Houston, TX, 1981), pp. 604–614.

    Google Scholar 

  23. G. C. Wood, A. Richardson, M. G. Hobby, and J. Boustead, The Identification of the Thin Healing layers at the Base of Oxide Scales on Fe-Cr Based Alloys,Corr. Sci. 9, 659 (1969).

    Google Scholar 

  24. J. M. Francis and J. A. Jutson, Role of Silicon in Determining the Oxidation Resistance of an Austenitic Steel,Mat. Sci. Eng. 4, 84 (1969).

    Google Scholar 

  25. G. C. Wood, High-Temperature Oxidation of Alloys,Oxid. Met. 2(1), 11–57 (1970).

    Google Scholar 

  26. H. Hindam and D. P. Whittle, Microstructure, Adhesion, and Growth Kinetics of Protective Scales on Metals and Alloys,Oxid. Met. 18(5/6), 245–284 (1983).

    Google Scholar 

  27. A. Abba, A. Galarie, and M. Caillet, Protection Du Fer Contre L'Oxydation Par Siliciuration Superficielle,Mat. Chem. 5, 147 (1980).

    Google Scholar 

  28. M. L. Glenn, S. J. Bullard, D. E. Larson, and S. C. Rhoads,New Development in Stainless Steel Technology (ASM, Detroit, MI, 1984).

    Google Scholar 

  29. W. C. Hagel,Trans. of Metall. Soc. of AIME 236, 179 (1966).

    Google Scholar 

  30. K. Nohara and K. Hirano,Proceeding of the International Conference on Science Technology of Iron and Steel (Tokyo, Publisher, 1970).

    Google Scholar 

  31. A. W. Bowen and G. M. Leak,Met. Trans. 1(6), 1695 (1970).

    Google Scholar 

  32. A. M. Brown and M. F. Ashby, Correlations for Diffusion Constants,ACTA Metall. 28 1085 (1980).

    Google Scholar 

  33. Th. Heumann and R. Imu, The Development and Growth of Protection Alpha-Al2O3 Scales on Alloys,J. Phys. Chem. Solid 29 1613 (1968).

    Google Scholar 

  34. D. A. Porter and K. E. Easterling,Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, Ltd., Berkshire, England, 1981), pp. 101–102.

    Google Scholar 

  35. Per. Kofstad, Oxidation Mechanism for Pure Metals in Single Oxidation Gases, High-Temperature Corrosion, InInternational Corrosion Conference (NACE, Houston, TX, 1981), pp. 123–138

    Google Scholar 

  36. J. A. Richardson, M. C. Hobby, and J. Boustead,Corr. Sci. 9, 659 (1969).

    Google Scholar 

  37. P. T. Mosley, G. Tappin, J. A. Crosley, and J. C. Riviere,Corr. Sci. 23, 901–920 (1983).

    Google Scholar 

  38. R. Freer, Diffusion in Silicate Materials and Glasses,Minerals Petrol. 76 449 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawers, J.C., Larson, D.E. Oxidation of Fe-8Cr-14Ni-Al-Si-Mn from 700 to 1000°C. Oxid Met 27, 103–120 (1987). https://doi.org/10.1007/BF00656734

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656734

Key words

Navigation