Skip to main content
Log in

Temperature and angular dependences of upper critical fields for the layer structure superconductor 2H-NbSe2

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The temperature and angular dependences of upper critical fieldsH c2 have been measured for several 2H-NbSe2 single crystals by use of an electrical conduction method in magnetic fields up to 150 kOe. As the temperature approaches the transition temperatureT c , the value ofH c2‖ (parallel to the layer planes) decreases with a positive curvature, while the value ofH c2⊥ (perpendicular to the layer planes) decreases almost linearly. The ratio ofH c2‖ toH c2⊥ increases monotonically from 2.4 nearT c with decreasing temperature and reaches the constant value of 3.2 at the lowest temperature. It becomes clear that the simple effective mass model based on the anisotropic Ginzburg-Landau theory does not explain our experimental results. The anisotropic behavior ofH c2 can be accounted for by the Takanaka theory, which includes anisotropies of both the Fermi velocity and the energy gap and the effect of nonlocality. Agreement between experimental results and the theoretical prediction is obtained by the use of values of 0.16≲ε 2 1 ≲0.25 and −0.6≲ε 2 ≲−0.3, where ε 1 is the mass anisotropy parameter and ε 2 the gap anisotropy parameter. The coupling strength between layers is too strong to be explained by the Josephson phase coupling model proposed for quasi-two-dimensional layer superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Yoffe,Festkörper probleme XIII, 1 (1973).

    Google Scholar 

  2. F. R. Gamble, F. J. DiSalvo, R. A. Klemm, and T. H. Geballe,Science 168, 568 (1970).

    Google Scholar 

  3. J. A. Wilson, F. J. DiSalvo, and S. Mahajan,Adv. Phys. 24, 117 (1975).

    Google Scholar 

  4. V. L. Ginzburg,Zh. Eksp. Teor. Fiz. 23, 236 (1952).

    Google Scholar 

  5. L. P. Gor'kov and T. K. Melik-Barkhudarov,Zh. Eksp. Teor. Fiz. 45, 1493 (1963) [Soviet Phys.—JETP 18, 1031 (1964)].

    Google Scholar 

  6. D. R. Tilley,Proc. Phys. Soc. 85, 1177 (1965);86, 289 (1965).

    Google Scholar 

  7. C. Caroli, P. G. de Gennes, and J. Matricon,Phys. Kondens. Materie 1, 176 (1963).

    Google Scholar 

  8. K. Takanaka,Phys. Stat. Sol. (b) 68, 623 (1975).

    Google Scholar 

  9. W. E. Lawrence and S. Doniach, inProc. 12th Int. Conf. Low Temp. Phys. (Academic Press of Japan, Kyoto, 1971), p. 361.

    Google Scholar 

  10. K. Yamaji,Phys. Lett. 38A, 43 (1972).

    Google Scholar 

  11. R. A. Klemm, M. R. Beasley, and A. H. Luther,J. Low Temp. Phys. 16, 607 (1974).

    Google Scholar 

  12. N. Boccara, J. P. Carton, and G. Sarma,Phys. Lett. 49A, 165 (1974).

    Google Scholar 

  13. R. A. Klemm, A. H. Luther, and M. R. Beasley,Phys. Rev. B 12, 877 (1975).

    Google Scholar 

  14. L. N. Bulaevskii,Zh. Eksp. Teor. Fiz. 64, 2241;65, 1278 (1973) [Soviet Phys.—JETP 37, 1133 (1973);38, 634 (1974)].

    Google Scholar 

  15. R. C. Morris, R. V. Coleman, and B. Bhandari,Phys. Rev. B 5, 895 (1972).

    Google Scholar 

  16. R. C. Morris and R. V. Coleman,Phys. Rev. B 7, 991 (1973).

    Google Scholar 

  17. P. de Trey, S. Gygax, and J.-P. Jan,J. Low Temp. Phys. 11, 421 (1973).

    Google Scholar 

  18. Y. Muto, N. Toyota, K. Noto, and A. Hoshi,Phys. Lett. 45A, 99 (1973).

    Google Scholar 

  19. J. A. Woollam, R. B. Somoano, and P. O'Connor,Phys. Rev. Lett. 32, 712 (1974).

    Google Scholar 

  20. Y. Muto, N. Toyota, H. Nakatsuji, N. Kobayashi, and K. Noto, inProc. 14th Int. Conf. Low Temp. Phys. (1975), Vol. 2, p. 89.

  21. N. Toyota, MC Thesis, Tohoku University (1973), unpublished (in Japanese).

  22. R. Kershaw, M. Vlasse, and A. Wold,Inorg. Chem. 6, 1599 (1967).

    Google Scholar 

  23. P. Molinié, D. Jerome, and A. J. Grant,Phil. Mag. 30, 1091 (1974).

    Google Scholar 

  24. H. A. Leupold, F. Rothwarf, J. J. Winter, J. T. Breslin, R. L. Ross, and T. R. AuCoin,J. Appl. Phys. 45, 5399 (1974).

    Google Scholar 

  25. R. E. Schwall, G. R. Stewart, and T. H. Geballe,J. Low Temp. Phys. 22, 557 (1976).

    Google Scholar 

  26. S. Foner and E. J. McNiff,Phys. Lett. 45A, 429 (1973).

    Google Scholar 

  27. B. P. Clayman,Can. J. Phys. 50, 3193 (1972).

    Google Scholar 

  28. N. Kobayashi, K. Noto, and Y. Muto, inProc. 14th Int. Conf. Low Temp. Phys. (1975), Vol. 2, p. 93.

  29. N. Kobayashi, to be published; also Ph.D. Thesis, Tohoku University (1976) (in Japanese).

  30. G. Kostorz, L. L. Isaacs, R. L. Panosh, and C. C. Kock,Phys. Rev. Lett. 27, 304 (1971).

    Google Scholar 

  31. P. C. Hohenberg and N. R. Werthamer,Phys. Rev. 153, 493, (1967).

    Google Scholar 

  32. T. Tsuzuki,J. Low Temp. Phys. 9, 525 (1972).

    Google Scholar 

  33. K. Aoi, W. Dieterich, and P. Fulde,Z. Phys. 267, 223 (1974).

    Google Scholar 

  34. P. Entel and M. Peter,J. Low Temp. Phys. 22, 5/6 (1976).

  35. J. D. Axe and G. Shirane,Phys. Rev. 8, 1965 (1973).

    Google Scholar 

  36. G. Shirane, J. D. Axe, and S. M. Shapiro,Solid State Commun. 13, 1893 (1973); S. M. Shapiro, G. Shirane, and J. D. Axe,Phys. Rev. 12, 4899 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyota, N., Nakatsuji, H., Noto, K. et al. Temperature and angular dependences of upper critical fields for the layer structure superconductor 2H-NbSe2 . J Low Temp Phys 25, 485–499 (1976). https://doi.org/10.1007/BF00655842

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655842

Keywords

Navigation