Skip to main content
Log in

Lipase-catalyzed enantioselective esterifications using different microemulsion-based gels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Chiral esters with high optical purity have been synthesized at 298.2 K from racemic 2-octanol and alkanoic acids using the commerical lipases fromChromobacterium viscosum (CV) orCandida sp. (SP 525) immobilized in microemulsion-based gelatin gels. The microemulsions consisted of water and alkanes stabilized by the anionic surfactant sodium 1,4-bis(2-ethylhexyl) sulfosuccinate (AOT) and the naturally occurring zwitterionic surfactant soybean lecithin, respectively. The enzymes were solubilized both in water-in-oil (W/O) microemulsions and in microemulsions with a bicontinuous structure. Different microstructures of the gels were chosen since the enzyme may undergo conformational changes in different environments resulting in different catalytic efficiencies toward competing substrates. Therefore, it is of great fundamental interest to know the phase behaviour and the microstructures of the used microemulsion systems. Phase diagrams were determined at 298.2 K for the systems water-hexane-AOT and ethanol/water (1∶1)-hexadecane-soybean lecithin. The former system exhibited a large one-phase W/O microemulsion region, while in the latter a small one-phase region with bicontinuous structure was present. The kinetic enantiomeric ratios (E-values), as determined from enantiomeric excess (e.e.) values at a conversion below 0.5, were higher both in the W/O microemulsion as well as in the bicontinuous microemulsion using the SP 525 lipase, than using the CV lipase. On the other hand, the conversions were higher using gels based on W/O microemulsions (AOT stabilized) than using gels based on microemulsions with a bicontinuous structure (lecithin stabilized).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danielsson I, Lindman B (1981) Colloids Surfaces 3:391–392

    Google Scholar 

  2. Stilbs P, Lindman B (1984) Progr Colloid Polym Sci 69:39–47

    Google Scholar 

  3. Evans DF, Mitchell DJ, Ninham BW (1986) J Phys Chem 90:2817–2825

    Google Scholar 

  4. Israelachvili J (1994) Colloids Surfaces A: Physicochemical Eng Aspects 91:1–8

    Google Scholar 

  5. Zana R (1994) Heterogeneous Chem Rev 1:145–157

    Google Scholar 

  6. Stickdorn K, Schwuger MJ, Schomäcker R (1994) Tenside Surf Det 31:218–228

    Google Scholar 

  7. Fletcher PDI, Freedman RB, Mead J, Oldfield C, Robinson BH (1984) Colloids Surfaces 10:193–203

    Google Scholar 

  8. Fletcher PDI, Robinson BH, Freedman RB, Oldfield C (1985) J Chem Soc Faraday Trans 181:2667–2679

    Google Scholar 

  9. Fletcher PDI, Freedman RB, Robinson BH, Rees GD, Schomäcker R (1987) Biochim Biophys Acta 912:278–282

    Google Scholar 

  10. Schomäcker R, Robinson BH, Fletcher PDI (1988) J Chem Soc Faraday Trans 184:4203–4212

    Google Scholar 

  11. Xenakis A, Valis TP, Kolisis FN (1989) Progr Colloid Polym Sci 79:88–93

    Google Scholar 

  12. Larsson KM, Oldfield C, Freedman RB (1989) Eur J Biochem 183:357–361

    Google Scholar 

  13. Larsson KM, Olsson U, Adlercreutz P, Mattiasson B (1990) Biotechnol Bioeng 35:135–141

    Google Scholar 

  14. Stark MB, Skagerlind P, Holmberg K, Carlfors J (1990) Colloid Polym Sci 268:384–388

    Google Scholar 

  15. Hayes DG, Gulari E (1990) Biotechnol Bioeng 35:793–801

    Google Scholar 

  16. Larsson KM, Adlercreutz P, Mattiasson B (1991) J Chem Soc Faraday Trans 87:465–471

    Google Scholar 

  17. Kolisis FN, Valis TP, Xenakis A (1990) Ann NY Acad Sci 613:674–680

    Google Scholar 

  18. Xenakis A, Valis TP, Kolisis N (1991) Progr Colloid Polym Sci 84:508–511

    Google Scholar 

  19. Hedström G, Slotte JP, Backlund M, Molander O, Rosenholm JB (1992) Biocatalysis 6:281–290

    Google Scholar 

  20. Hedström G, Slotte JP, Molander O, Rosenholm JB (1992) Biotechnol Bioeng 39:218–224

    Google Scholar 

  21. Hayes DG, Gulari E (1992) Biotechnol Bioeng 40:110–118

    Google Scholar 

  22. Skagerlind P, Jansson M, Hult K (1992) J Chem Tech Biotechnol 54:277–282

    Google Scholar 

  23. Miyake Y, Owari T, Matsuura K, Teramoto M (1993) J Chem Soc Faraday Trans 89:1993–1999

    Google Scholar 

  24. Pileni MP (1993) J Phys Chem 97:6961–6973

    Google Scholar 

  25. Pileni MP (1993) Adv Colloid Interface Sci 46:139–163

    Google Scholar 

  26. Hedström G, Backlund M, Slotte JP (1993) Biotechnol Bioeng 42:618–624

    Google Scholar 

  27. Singh CP, Shah DO (1993) Colloids Surfaces A: Physicochem Eng Aspects 77:219–224

    Google Scholar 

  28. Yang CL (1993) Ph D Thesis, The University of Michigan, USA

  29. Xenakis A, Stamatis H, Malliaris A, Kolisis FN (1993) Progr Colloid Polym Sci 93:373–376

    Google Scholar 

  30. Miyake Y, Owari T, Ishiga F, Teramoto M (1994) J Chem Soc Faraday Trans 90:975–986

    Google Scholar 

  31. Singh CP, Skagerlind P, Holmberg K, Shah DO (1994) J Amer Oil Chem Soc 71:1405–1409

    Google Scholar 

  32. Skagerlind P, Holmberg K (1994) J Dispersion Sci Technol 15:317–332

    Google Scholar 

  33. Backlund S, Rantala M (1995) Colloid Polym Sci 273:293–297

    Google Scholar 

  34. Backlund S, Eriksson F, Karlsson S, Lundsten G (1995) Colloid Polym Sci 273:533–538

    Google Scholar 

  35. Sonesson C, Holmberg K (1991) J Colloid Interface Sci 141:239–244

    Google Scholar 

  36. Holmberg K (1994) Adv Colloid Interface Sci S1:137–174

    Google Scholar 

  37. Dodson GG, Lawson DM, Winkler FK (1992) Faraday Discuss 93:95–105

    Google Scholar 

  38. Rees GD (1990) Ph D Thesis, University of East Anglia

  39. Rees GD, Nascimento MG, Jenta TRJ, Robinson BH (1991) Biochim Biophys Acta 1073:493–501

    Google Scholar 

  40. Rees GD, Robinson BH (1993) Adv Mater 5:608–619

    Google Scholar 

  41. Rees GD, Jenta TRJ, Nascimento MG, Catauro M, Robinson BH, Stephenson GR, Olphert RDG (1993) Indian J Chem 32B:30–34

    Google Scholar 

  42. Jenta TRJ, Robinson BH, Batts G, Thomson AR (1991) Progr Colloid Polym Sci 84:334–337

    Google Scholar 

  43. Nascimento MG, Rezende MC, Vecchia RD, Jesus PC, Aguiar LMZ (1992) Tetrahedron Lett 33:5891–5894

    Google Scholar 

  44. Uemasu I, Hinze WL (1994) Chirality 6:649–653

    Google Scholar 

  45. Jesus PC, Rezende MC, Nascimento MG (1995) Tetrahedron Asymmetry 6:63–66

    Google Scholar 

  46. Backlund S, Eriksson F, Kanerva LT, Rantala M (1995) Colloids Surfaces B: Biointerfaces 4:121–127

    Google Scholar 

  47. La Mesa C, Coppola L, Rainieri GA, Terenzi M, Chidichimo G (1992) Langmuir 8:2616–2622

    Google Scholar 

  48. Shinoda K, Araki M, Sadaghiani A, Khan A, Lindman B (1991) J Phys Chem 95:989–993

    Google Scholar 

  49. Shinoda K, Shibata Y, Lindman B (1993) Langmuir 9:1254–1257

    Google Scholar 

  50. Backlund S, Rantala M, Molander O (1994) Colloid Polym Sci 272:1098–1103

    Google Scholar 

  51. Ohshima A, Norita H, Kito M (1982) J Biochem 93:1421–1425

    Google Scholar 

  52. Morita S, Norita H, Matoba T, Kito M (1984) J Amer Oil Chem Soc 61:1571–1574

    Google Scholar 

  53. Schmidli PK, Luisi PL (1990) Biocatalysis 3:367–376

    Google Scholar 

  54. Haering G, Luisi PL (1986) J Phys Chem 90:5892–5895

    Google Scholar 

  55. Quellet C, Eicke HP (1986) Chimia 40:233–238

    Google Scholar 

  56. Robinson BH (1990) Chem Br 342–344

  57. Chen CS, Fujimoto Y, Girdaukas G, Sih CJ (1982) J Amer Chem Soc 104:7294–7299

    Google Scholar 

  58. Jada A, Lang J, Zana R (1989) J Phys Chem 93:10–12

    Google Scholar 

  59. Kunieda H, Nakamura K, Davis HT, Evans DF (1991) Langmuir 7:1915–1991

    Google Scholar 

  60. Backlund S, Eriksson F, Kanerva LT, Karlsson S, Lundsten G, Rantala M, Vänttinen E, Wahtera G (1994) In: Stenius P, Sarvaranta L (eds) 12th Scand Symp Surface Chem, TKK Offset, Espoo 1994, Series C6:117–119

  61. Petit C, Zemb T, Pileni MP (1991) Langmuir 7:223–231

    Google Scholar 

  62. Chen CS, Wu SH, Girdaukas G, Sih CJ (1987) J Amer Chem Soc 109:2812–2817

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Backlund, S., Eriksson, F., Hedström, G. et al. Lipase-catalyzed enantioselective esterifications using different microemulsion-based gels. Colloid Polym Sci 274, 540–547 (1996). https://doi.org/10.1007/BF00655229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655229

Key words

Navigation