Skip to main content
Log in

Linear magnetoresistance of aluminum

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The transverse magnetoresistivity of pure single crystals of aluminum (RRR ∼22,000) has been studied at 4.2 K and in high magnetic fields using the hard helicon technique. The measured magnetoresistivity is separated into a saturating and a linearly increasing part, and the effect of deformation and quenching on the linear component is studied. The linear component appears to be particularly sensitive to strains, and it is suggested that the dislocation structure is important. The Hall coefficient is also measured and is found to be field independent and equal to the free-electron value 1.023×10−10 Vm/AT within the experimental uncertainty of 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Lifschitz, M. Ya. Azbel', and M. I. Kaganov,Zh. Eksperim. i Teor. Fiz. 30, 220 (1955) [English transl.:Soviet Phys.—JETP3, 143 (1956)].

    Google Scholar 

  2. R. G. Chambers,Proc. Roy. Soc. (London)A238, 344 (1956).

    Google Scholar 

  3. P. A. Penz and R. Bowers,Solid State Commun. 5, 341 (1967).

    Google Scholar 

  4. P. A. Penz and R. Bowers,Phys. Rev. 172, 991 (1968).

    Google Scholar 

  5. J. S. Lass,J. Phys. C. 3, 1926 (1970).

    Google Scholar 

  6. J. Babiskin and R. G. Siebenmann,Phys. Rev. Lett. 27, 1361 (1971).

    Google Scholar 

  7. S. A. Schaefer and J. A. Marcus,Phys. Rev. Lett. 27, 935 (1971).

    Google Scholar 

  8. H. Taub, R. L. Smidt, B. W. Maxfield, and R. Bowers,Phys. Rev. B 4, 1134 (1971).

    Google Scholar 

  9. A. M. Simpson,J. Phys. F. 3, 1471 (1973).

    Google Scholar 

  10. R. J. Balcombe,Proc. Roy. Soc. (London)A275, 113 (1963).

    Google Scholar 

  11. E. S. Borovik and V. G. Volotskaya,Zh. Eksperim. i Teor. Fiz. 48, 1554 (1965) [English transl.:Soviet Phys.—JETP 21, 1041 (1965)].

    Google Scholar 

  12. Yu. N. Chiang, V. V. Eremenko, and O. G. Shevchenko,Zh. Eksperim. i Teor Fiz. 57, 1923 (1969). [English transl.:Soviet Phys.—JETP 30, 1040 (1970)].

    Google Scholar 

  13. R. J. Balcombe and R. A. Parker,Phil. Mag. 171, 533 (1970).

    Google Scholar 

  14. F. R. Fickett,Phys. Rev. B 3, 1941 (1971).

    Google Scholar 

  15. W. Kesternich and H. Ullmaier,Phys. Lett. 36A, 411 (1971).

    Google Scholar 

  16. T. Amundsen and P. Jerstad,J. Phys. F 2, 657 (1972).

    Google Scholar 

  17. Yu. N. Chiang and O. G. Shevchenko,Phys. Stat. Sol. 54, K47 (1972).

  18. J. A. Delaney,J. Phys. F, to be published.

  19. Nature (Phys. Sci.)235, 61 (1972).

  20. L. M. Falicov and H. Smidt,Phys. Rev. Lett. 29, 124 (1972).

    Google Scholar 

  21. T. Amundsen and R. P. Søvik,J. Low Temp. Phys. 2, 121 (1970).

    Google Scholar 

  22. T. Amundsen and Ø. Kverndalen,Phys. Lett. 43A, 9 (1973).

    Google Scholar 

  23. J. A. Delaney and A. B. Pippard,Rep. Progr. Phys. 35, 677 (1972).

    Google Scholar 

  24. R. J. Douglas and W. R. Datars,Can. J. Phys. 51, 1770 (1973).

    Google Scholar 

  25. A. V. Gold,Solid State Physics, Vol. 1, J. F. Cochran and R. R. Hearing, eds. (Gordon and Breach, 1968), p. 39.

  26. T. Amundsen and P. Seeberg,Physics Lett. 25A, 718 (1967).

    Google Scholar 

  27. J. M. Goodman,Phys. Rev. 171, 641 (1968).

    Google Scholar 

  28. D. E. Chimenti and B. W. Maxfield,Phys. Rev. B 7, 3501 (1973).

    Google Scholar 

  29. P. G. Siebenmann and J. Babiskin,Phys. Rev. Letters 30, 380 (1973).

    Google Scholar 

  30. B. L. Eyre,J. Phys. F 3, 422 (1973).

    Google Scholar 

  31. M. Kiritani,J. Phys. Soc. Japan 20, 1834 (1965).

    Google Scholar 

  32. J. G. Rider and C. T. B. Foxon,Phil. Mag. 13, 289 (1966).

    Google Scholar 

  33. C. O. Larson and W. L. Gordon,Phys. Rev. 156, 703 (1967).

    Google Scholar 

  34. A. I. Gutnikov and E. P. Fel'dman,Zh. Eksperim. i Teor. Fiz. 63, 1054 (1972) [English transl.:Soviet Phys.—JETP 36, 553 (1973)].

    Google Scholar 

  35. D. Shoenberg,Phys. Kondens Materie 9, 1 (1969).

    Google Scholar 

  36. K. M. Miller, R. G. Poulsen, and M. Springford,J. Low. Temp. Phys. 6, 411 (1972).

    Google Scholar 

  37. E. Nes and B. Nøst,Phil. Mag. 13, 855 (1966).

    Google Scholar 

  38. T. Frederighi, inLattice Defects in Quenched Materials, Cotterill, Doyan, Jackson, and Meshii, eds. (Academic Press, New York, 1965), p. 217.

    Google Scholar 

  39. R. G. Chambers, inSolid State Physics, Vol. 1:Electrons in Metals, Cochran and Haering, eds. (Gordon and Breach, 1968), p. 283.

  40. E. A. Kaner and E. P. Fel'dman,Fiz. Tverdogo Tela 10, 3046 (1968) [English transl.:Soviet Phys.—Solid State 10, 2401 (1969)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amundsen, T., Jerstad, P. Linear magnetoresistance of aluminum. J Low Temp Phys 15, 459–471 (1974). https://doi.org/10.1007/BF00654620

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654620

Keywords

Navigation