Skip to main content
Log in

The post-RLOF structure of the secondary components in close binary systems, with an application to masses of Wolf-Rayet stars

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The post-RLOF structure of the secondary after relaxation towards thermal equilibrium is calculated for a large grid of massive close binaries evolving through an early caseB of mass transfer. The initial primary masses range between 15 and 30M o, the initial mass ratio between 0.3 and 0.9. The possibility that matter leaves the system during RLOF is included using an additional free parameter β. The calculations are based on the accretion and relaxation properties of massive accretion stars. Conclusions on the post-RLOF secondaries are presented in function of β, M1i, andq i , in the form of tables and figures on the post-RLOF positions in the HR diagram, the final masses, mass ratios, chemical profiles and the remaining core-hydrogen burning lifetime. It is found that all systems starting from initial conditions in the grid specified above evolve sequentially, i.e. the primary evolves into a supernova before the end of core H burning of the secondary. No WR+WR systems are encountered. The results are used to determine the masses of ten double lined spectroscopic WR+OB binaries. Most of the WR masses are in the range 8–14M o, although the sample is subject to some important selection effects. One WR+OB binary has a WR mass between 4 and 5M o. It is argued that mass determinations based only on the spectral type of the secondary yield WR masses that are too high up to a factor two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbaro, G., Giannone, P., Gianuzzi, M. A., and Summa, C.: 1969, in M. Hack (ed.),Mass Loss from Stars, D. Reidel Publ. Co., Dordrecht, Holland, p. 217.

    Google Scholar 

  • Barlow, M. J., Smith, L. J., and Willis, A. J.: 1980,Monthly Notices Roy. Astron. Soc. 196, 101.

    Google Scholar 

  • Davis, A. B., Moffat, A. F. J., and Niemela, V. S.: 1981,Astrophys. J. 244, 528.

    Google Scholar 

  • De Loore, C.: 1981, in C. Chiosi and R. Stalio (eds.), ‘The Effects of Mass Loss on Stellar Evolution’,IAU Colloq. 59, 408.

    Google Scholar 

  • De Loore, C. and De Grève, J. P.: 1976,Astrophys. Space Sci. 35, 241.

    Google Scholar 

  • Doom, C. and De Grève, J. P.: 1981,Astrophys. Space Sci. 80, 369.

    Google Scholar 

  • Fraquelli, D. A. and Horn, J.: 1983, (in preparation).

  • Ganesh, V. S., Bappu, M. H. V., and Natarajan, V.: 1967,Kodaikanal Observ. Bull. Ser. A, 184.

  • Gaposhkin, S.: 1949,Peremennye Z. 7, 36.

    Google Scholar 

  • Hellings, P.: 1983,Astrophys. Space Sci. 96, 37.

    Google Scholar 

  • Hjellming, R. M. and Hiltner, W. A.: 1963,Astrophys. J. 137, 1080.

    Google Scholar 

  • Hidayat, B., Admiranto, A. G., and Van der Hucht, K. A.: 1984,Astrophys. Space Sci. 99, 175.

    Google Scholar 

  • Kippenhahn, R.: 1969,Astron. Astrophys. 3, 83.

    Google Scholar 

  • Kraitcheva, Z. T.: 1978,Nauch. Inf. Astron. 41, 66.

    Google Scholar 

  • Kron, G. E. and Gordon, K.: 1950,Astrophys. J. 111, 454.

    Google Scholar 

  • Lamers, H. J. G. L. M.: 1981, in C. Chiosi and R. Stalio (eds.), ‘The Effect of Mass Loss on Stellar Evolution’,IAU Colloq. 59, 19.

    Google Scholar 

  • Lamontagne, R., Moffat, A. F. J., and Seggewiss, W.: 1983,Astrophys. J., (in press).

  • Massevich, A. G., Tutukov, A. V., Yungelson, L. R.: 1976,Astrophys. Space Sci. 40, 115.

    Google Scholar 

  • Massey, P.: 1981,Astrophys. J. 244, 157.

    Google Scholar 

  • Massey, P.: 1982, in C. De Loore and A. J. Willis (eds.), ‘Wolf-Rayet Stars: Observations, Physics, Evolution’,IAU Symp. 99, 251.

    Google Scholar 

  • Massey, P. and Conti, P. S.: 1981,Astrophys. J. 244, 169.

    Google Scholar 

  • Massey, P. and Niemela, V. S.: 1981,Astrophys. J. 245, 195.

    Google Scholar 

  • Munch, G.: 1950,Astrophys. J. 112, 226.

    Google Scholar 

  • Neo, S., Miyaji, S., Nomoto, K., and Sugimoto, D.: 1977,Publ. Astron. Soc. Japan 29, 249.

    Google Scholar 

  • Neutsch, W., Schmidt, H., and Seggewiss, W.: 1981,Acta Astron. 31, 197.

    Google Scholar 

  • Niemela, V. S.: 1976,Astrophys. Space Sci. 45, 91.

    Google Scholar 

  • Niemela, V. S.: 1980, in M. J. Plavec, D. M. Popper, and R. K. Ulrich (eds.), ‘Close Binary Stars: Observations and Interpretation’,IAU Symp. 88 177.

    Google Scholar 

  • Niemela, V. S.: 1982, in C. De Loore and A. J. Willis (eds.), ‘Wolf-Rayet Stars: Observations, Physics, Evolution’,IAU Symp. 99, 299.

    Google Scholar 

  • Niemela, V. S. and Moffat, A. F. J.: 1982,Astrophys. J. 244, 528.

    Google Scholar 

  • Packet, W.: 1977, Masters thesis, Vrije Universiteit Brussel.

  • Popova, E. I., Tutukov, A. V., and Yungelson, L. R.: 1978,Nauch. Inform. Astron. 42, 45.

    Google Scholar 

  • Schwarzschild, M. and Härm, R.: 1958,Astrophys. J. 128, 348.

    Google Scholar 

  • Seggewiss, W.: 1974,Astron. Astrophys. 31, 211.

    Google Scholar 

  • Stepien, K.: 1979,Acta Astron. 20, 13.

    Google Scholar 

  • Stothers, R. and Chin, C. W.: 1976,Astrophys. J. 204, 472.

    Google Scholar 

  • Tcherepashchuk, A. M.: 1971,Astron. Zh. 48, 1201.

    Google Scholar 

  • Thomas, H. C.: 1977,Ann. Rev. Astron. Astrophys. 15, 127.

    Google Scholar 

  • Ulrich, R. K.: 1972,Astrophys. J. 172, 165.

    Google Scholar 

  • Underhill, A. B., Divan, L., Prevot-Burnichon, M. L., and Doazan, V.: 1979,Monthly Notices Roy. Astron. Soc. 189, 601.

    Google Scholar 

  • Vanbeveren, D. and Packet, W.: 1979,Astron. Astrophys. 80, 242.

    Google Scholar 

  • Vanbeveren, D., De Grève, J. P., Van Dessel, E. L. and De Loore, C.: 1979,Astron. Astrophys. 73, 19.

    Google Scholar 

  • Van der Hucht, K. A., Conti, P. S., Lundström, I., and Stenholm, B.: 1981,Space Sci. Rev. 28, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellings, P. The post-RLOF structure of the secondary components in close binary systems, with an application to masses of Wolf-Rayet stars. Astrophys Space Sci 104, 83–109 (1984). https://doi.org/10.1007/BF00653994

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00653994

Keywords

Navigation