Skip to main content
Log in

Permeabilization and morphological changes in phosphatidylglycerol bilayers induced by an antimicrobial peptide, tachyplesin I

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Tachyplesin I, a broad-spectrum antimicrobial peptide fromTachypleus tridentatus has a basic (+7), amphiphilic, and cyclic β-sheet structure. We reported (Matsuzaki K. et al. (1991) Biochim. Biophys. Acta 1070:259–264) that 1) the action mechanism of tachyplesin I may be the permeabilization of bacterial membranes, 2) the peptide specifically permeabilizes acidic phospholipid bilayers, and 3) its Trp2 residue is located in the hydrophobic region near the surface of the bilayers. In this paper, we found that tachyplesin I dose-dependently induces not only the permeabilization but also aggregation/fusion and micellization of the phosphatidylglycerol large unilamellar vesicles (100 nm in diameter) either in the gel (L-α-dipalmitoylphosphatidyl-DL-glycerol (DPPG)) or liquid-crystalline (egg yolk L-α-phosphatidyl-DL-glycerol (egg PG)) phase, as revealed by light scattering and electron micrograph techniques. The solid DPPG vesicles were more susceptible to the peptide. At peptide to lipid molar ratios (P/L) of 1/500 to 1/200, interpeptide interactions formed a pore through which calcein, a fluorescent dye, can leak out of the vesicles. The pore lifetime was longer in the DPPG vesicles. Further addition of the peptide caused aggregation and/or fusion of the vesicles. At a charge-neutralizingP/L ratio of 1/7, the enlarged vesicles disintegrated into small spherical particles (10–20 nm in diameter). The mechanism for these morphological changes will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dufourcq J, Faucon J-F, Fourche G, Dasseux J-L, Maire ML, Gulik-Krzywicki T (1986) Biochim Biophys Acta 859:33–48

    Google Scholar 

  2. Dufourc EJ, Smith ICP, Dufourcq J (1986) Biochemistry 25:6448–6455

    Google Scholar 

  3. Morgan CG, Williamson H, Fuller S, Hudson B (1983) Biochim Biophys Acta 732:668–674

    Google Scholar 

  4. Batenburg AM, Hibbeln JCL, Verkleij AJ, De Kruijff B (1987) Biochim Biophys Acta 903:142–154

    Google Scholar 

  5. Zidovetzki R, Banerjee U, Harrington W, Chan SI (1988) Biochemistry 27:5686–5692

    Google Scholar 

  6. Pache W, Chapman D, Hillby R (1972) Biochim Biophys Acta 255:358–364

    Google Scholar 

  7. Eytan G D, Broza R, Shalitin Y (1988) Biochim Biophys Acta 937:387–397

    Google Scholar 

  8. Kubesch P, Boggs J, Luciano L, Maass G, Tümmler B (1987) Biochemistry 26:2139–2149

    Google Scholar 

  9. Dufourc EJ, Dufourcq J, Birkbeck TH, Freer JH (1990) Eur J Biochem 187:581–587

    Google Scholar 

  10. Epand RM, Gawish A, Iqbal M, Gupta KB, Chen CH, Segrest JP, Anantharamaiah GM (1987) J Biol Chem 262:9389–9396

    Google Scholar 

  11. Akaji K, Fujii N, Tokunaga F, Miyata T, Iwanaga S, Yajima H (1989) Chem Pharm Bull 37:2661–2664

    Google Scholar 

  12. Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S (1988) J Biol Chem 263:16709–16713

    Google Scholar 

  13. Miyata T, Tokunaga F, Yoneya T, Yoshikawa K, Iwanaga S, Niwa M, Takano T, Shimonishi Y (1989) J Biochem 106:663–668

    Google Scholar 

  14. Kawano K, Yoneya T, Miyata T, Yoshikawa K, Tokunaga F, Terada Y, Iwanaga S (1990) J Biol Chem 265:15365–15367

    Google Scholar 

  15. Kawano K, Yoneya T, Miyata T, Yoshikawa K, Tokunaga F, Terada Y, Iwanaga S (1991) In: Shimonishi Y (ed) Peptide chemistry 1990. Protein Research Foundation, Osaka, pp 385–388

    Google Scholar 

  16. Matsuzaki K, Fukui M, Fujii N, Miyajima K (1991) Biochim Biophys Acta 1070:259–264

    Google Scholar 

  17. Hope MJ, Bally MB, Webb G, Cullis PR (1985) Biochim Biophys Acta 812:55–65

    Google Scholar 

  18. Matsuzaki K, Takaishi Y, Fujita T, Miyajima K (1991) Colloid Polym Sci 269:604–611

    Google Scholar 

  19. Bartlett GR (1959) J Biol Chem 234:466–468

    Google Scholar 

  20. Allen TM, Cleland LG (1980) Biochim Biophys Acta 597:418–426

    Google Scholar 

  21. Johonson SM, Bangham AD, Hill MW, Korn ED (1971) Biochim Biophys Acta 233:820–826

    Google Scholar 

  22. Matsuzaki K, Nakai S, Handa T, Takaishi Y, Fujita T, Miyajima K (1989) Biochemistry 28:9392–9398

    Google Scholar 

  23. Schwarz G, Robert CH (1990) Biophys J 58:577–583

    Google Scholar 

  24. Gregoriadis G (ed) (1984) Liposome technology, Vol 3. CRC Press Inc, Florida, pp 193–195

    Google Scholar 

  25. Stacey KA (1956) Light-scattering in physical chemistry. Butterworths Scientific Publications, London, chapter 2

    Google Scholar 

  26. Struck DK, Hoekstra D, Pagano RE (1981) Biochemistry 20:4093–4099

    Google Scholar 

  27. Nagawa Y, Regan SL (1991) Membrane Symposium 3:80–83

    Google Scholar 

  28. Ohki S (1988) In: Ohki S, Doyle D, Flangan TD, Hui SW, Mayhew E (eds) Molecular mechanisms of membrane fusion. Plenum Press, New York, pp 123–138

    Google Scholar 

  29. Walter A, Steer CJ, Blumenthal R (1986) Biochem Biophys Acta 861:319–330

    Google Scholar 

  30. Lafleur M, Samson I, Pézdet M (1991) Chem Phys Lipids 59:233–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuzaki, K., Fukui, M., Fujii, N. et al. Permeabilization and morphological changes in phosphatidylglycerol bilayers induced by an antimicrobial peptide, tachyplesin I. Colloid Polym Sci 271, 901–908 (1993). https://doi.org/10.1007/BF00652773

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00652773

Key words

Navigation