Skip to main content
Log in

Model for alkanol + alkane mixtures: Extension and experimental verification

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A recently developed model for 1-alkanol+alkane mixtures is extended to methanol mixtures and to the non-polar mixing partners tetrachloromethane and benzene. The model contains chemical and physical terms, which are combined in a thermodynamically consistent way. For our calculations on methanol mixtures, we have measured gE of methanol+ hexane via static vapor pressure measurements. In order to check the model predictions for systems with higher alkanols and alkanes, we have also determined gE of 1-octanol+tetradecane by measuring the melting curve. The reproduction of the excess properties of methanol+hexane, the agreement between predicted and measured values of gE for 1-octanol+ tetradecane, and the capability to deal also with other non-polar mixing partners demonstrate the power and reliability of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Liu, F. Kohler, L. Karrer, J. Gaube, and P. Spellucci,Pure and Appl. Chem. 61, 1441 (1989).

    Google Scholar 

  2. J. A. Riddick, W. B. Bunger, and T. K. Sakaro,Organic Solvents, 4th edn., (Wiley, New York, 1986).

    Google Scholar 

  3. T. Boublik and K. Aim,Coll. Czech. Chem. Comm. 37, 3513 (1972).

    Google Scholar 

  4. T. M. Letcher and F. Marsicano,J. Chem. Thermodyn. 6, 509 (1974).

    Google Scholar 

  5. R. R. Dreisbach and R. A. Martin,Ind. Eng. Chem. 41, 2875 (1949).

    Google Scholar 

  6. A. J. Streiff, A. R. Hulme, P. A. Cowie, N. C. Krouskop, and F. D. Rossini,Anal. Chem. 27, 411 (1955).

    Google Scholar 

  7. H. Atrops, H. E. Kalali, and F. Kohler,Ber. Bunsenges. Phys. Chem. 86, 26 (1982).

    Google Scholar 

  8. M. Davies and B. Kybett,Trans. Faraday Soc. 61, 1608 (1965).

    Google Scholar 

  9. J. K. Cline and D. H. Andrews,J. Am. Chem. Soc. 53, 3668 (1931).

    Google Scholar 

  10. H. L. Finke, M. E. Gross, G. Waddington, and H. M. Huffman,J. Am. Chem. Soc. 76, 333 (1954).

    Google Scholar 

  11. J. F. Messerly and G. B. Guthrie,J. Chem. Eng. Data 12, 338 (1967).

    Google Scholar 

  12. G. S. Parks and D. W. Light,J. Am. Chem. Soc. 56, 1511 (1934).

    Google Scholar 

  13. N. Van Nhu, G. Nowak, and P. Svejda,Ber. Bunsenges. Phys. Chem. 92, 1537 (1988).

    Google Scholar 

  14. A. Liu, Doctoral Thesis, Ruhr-University, Bochum (1990).

  15. N. Van Nhu and F. Kohler,Fluid Phase Equili. 50, 267 (1989).

    Google Scholar 

  16. M. A. Siddiqi, G. Götze, and F. Kohler,Ber. Bunsenges. Phys. Chem. 84, 529 (1980).

    Google Scholar 

  17. H. E. Kalali, A. M. Demiriz, J. Budde, F. Kohler, A. Dallos, and F. Ratkovics,Fluid Phase Equili. 54, 111 (1990).

    Google Scholar 

  18. K. N. Marsh and A. E. Richards,J. Chem. Eng. Data 23, 288 (1978).

    Google Scholar 

  19. B. D. Smith and R. Srivastava,Thermodynamic Data for Pure Compounds, Part B (Elsevier, Amsterdam 1986).

    Google Scholar 

  20. J. H. Dymond and E. B. Smith,The Virial Coefficients of Pure Gases and Mixtures (Clarendon Press, Oxford 1980).

    Google Scholar 

  21. J. J. Ott, G. V. Cornett, C. E. Stouffer, B. F. Woodfield, C. Guanquan, and J. J. Christensen,J. Chem. Thermodyn 18, 867 (1986).

    Google Scholar 

  22. S. C. Hwang and R. L. Robinson,J. Chem. Eng. Data 22, 319 (1977).

    Google Scholar 

  23. H. C. Van Ness and M. M. Abbott,Int. Data Ser. A 2 (1976).

  24. G. Hradetzky and H.-J. Bittrich,Int. Data Ser. A 216 (1986).

  25. F. Kohler,Monatsh. Chem. 88, 388 (1957).

    Google Scholar 

  26. R. J. Munn and F. Kohler,Monatsh. Chem. 91, 381 (1960).

    Google Scholar 

  27. V. Ragaini, R. Santi, and S. Carrà,Lincei Rend. Sc., Fis. Mat. e Nat. 45, 540 (1968).

    Google Scholar 

  28. E. S. Kim and K. N. Marsh,J. Chem. Eng. Data 33, 288 (1983).

    Google Scholar 

  29. M. D. Donohue and J. M. Prausnitz,Can. J. Chem. 53, 1586 (1975).

    Google Scholar 

  30. H. V. Kehiaian,Ber. Bunsenges. Phys. Chem. 81, 908 (1977).

    Google Scholar 

  31. H. V. Kehiaian, J.-P. E. Grolier, and G. C. Benson,J. Chim. Physique 75, 1031 (1978).

    Google Scholar 

  32. L. Andreoli-Ball, D. Patterson, M. Costas, and M. Caceres-Alonso,J. Chem. Soc. Faraday Trans. I. 84, 3991 (1988).

    Google Scholar 

  33. J. A. Barker, I. Brown, and F. Smith,Disc. Faraday Soc. 15, 142 (1953).

    Google Scholar 

  34. R. M. Stokes and C. Burfitt,J. Chem. Thermodyn. 5, 623 (1973).

    Google Scholar 

  35. Y. S. Luo, P. L. Cen, B. G. Li, J. D-Zhou, and Z. Q. Zhu,Fluid Phase Equili. 20, 137 (1985).

    Google Scholar 

  36. T. B. Tai, R. S. Ramalho, and S. Kaliaguine,Can. J. Chem. Eng. 50, 771 (1972).

    Google Scholar 

  37. G. Scatchard and L. Ticknor,J. Am. Chem. Soc. 74 3724 (1952).

    Google Scholar 

  38. E. A. Moelwyn-Hughes and R. W. Missen,J. Phys. Chem. 61, 518 (1957).

    Google Scholar 

  39. G. C. Paraskevopoulos and R. W. Missen,Trans. Faraday Soc. 58, 869 (1962).

    Google Scholar 

  40. R. F. Platford,J. Chem. Soc. Faraday Trans. I 73, 267 (1977).

    Google Scholar 

  41. B. Darce and G. C. Benson,Can. J. Chem. 41, 278 (1963).

    Google Scholar 

  42. I. Nagata and K. Tamura,Fluid Phase Equili. 15, 67 (1963).

    Google Scholar 

  43. J.-E. Otterstedt and R. W. Missen,Trans. Faraday Soc. 58, 879 (1962).

    Google Scholar 

  44. G. Scatchard, S. E. Wood, and J. M. Mochel,J. Am. Chem. Soc. 8, 1957 (1946).

    Google Scholar 

  45. K. Strubl, V. Svoboda, and R. Holub,Coll. Czech. Chem. Comm. 37, 3522 (1972).

    Google Scholar 

  46. A. Oracz and G. Kolassinska,Fluid Phase Equili. 35, 253 (1987).

    Google Scholar 

  47. V. C. Smith and R. L. Robinson,J. Chem. Eng. Data 15 391 (1970).

    Google Scholar 

  48. R. F. Platford,J. Solution Chem. 5, 645 (1976).

    Google Scholar 

  49. K. Hoskyns, D. Jones, and B. C.-Y. Lu,J. Chem. Eng. Data 11, 488 (1966).

    Google Scholar 

  50. H. W. Schnaible, H. C. Van Ness, and J. M. Smith,AIChE J. 3, 147 (1957).

    Google Scholar 

  51. F. Vesely, V. Hynek, V. Svoboda, and R. Holub,Coll. Czech. Chem. Comm. 39, 355 (1974).

    Google Scholar 

  52. C. C. Tsao and J. M. Smith,Chem. Eng. Progr. Symp. Ser. 49, 197 (1953).

    Google Scholar 

  53. G. C. Williams, S. Rosenberg, and H. A. Rothenberg,Ind. Eng. Chem. 40, 1273 (1948).

    Google Scholar 

  54. P. S. Murti and M. Van Winkle,J. Chem. Eng. Data 3 65 (1958).

    Google Scholar 

  55. D. Bares, M. Soulie, and J. Metzger,J. Chim. Physique Biol. 70, 1531 (1973).

    Google Scholar 

  56. I. Brown and W. Fock,Austral. J. Chem. 14, 387 (1961).

    Google Scholar 

  57. J. R. Goates, R. L. Snow, and M. R. James,J. Phys. Chem. 65 335 (1961).

    Google Scholar 

  58. E. R. Washburn and A. Lightbody,J. Phys. Chem. 34, 2701 (1930).

    Google Scholar 

  59. R. V. Mrazek and H. C. Van Ness,AIChE J. 7, 190 (1961).

    Google Scholar 

  60. F. Vesely and J. Pick,Coll. Czech. Chem. Comm. 34, 1854 (1969).

    Google Scholar 

  61. K.-Y. Hsu and H. L. Clever,J. Chem. Eng. Data 20, 268 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated at the Festsymposium celebrating Dr. Henry V. Kehiaian's 60th birthday, Clermont-Ferrand, France, 17–18 May 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, A., Pusicha, K., Demiriz, A.M. et al. Model for alkanol + alkane mixtures: Extension and experimental verification. J Solution Chem 20, 39–56 (1991). https://doi.org/10.1007/BF00651639

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00651639

Key words

Navigation