Skip to main content
Log in

Thermodynamic properties of aqueous organic mixtures near the critical demixing: Cases of 2,6-dimethylpyridine and of 2-isobutoxyethanol

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Phase diagrams, volumes and heat capacities of aqueous mixtures of 2,6-dimethylpyridine (2,6-L) and 2-isobutoxyethanol (iBE) and activities of 2,6-L in aqueous mixtures were measured in the monophasic region near the lower critical solution temperature (LCST). With 2,6-L some measurement were also made just above the LCST. From the temperature dependence of these data, partial molar relative enthalpies (2,6-L), expansibilities and the temperature derivative of heat capacities were calculated and show that iBE undergoes a microphase transition at low concentration which is not related to the phase separation. On the other hand, the properties of 2,6-L in the water-rich region at temperatures well below the LCST indicates that this solute has only a slight tendency to associate. The heat capacities of 2,6-L show an important increase near the LCST. Such changes are not observed for iBE and other alkoxyethanols and amines since these systems already exist in the form of microphases; the partial molar properties of iBE near the LCST are nearly equal to the molar values of the pure liquid, and the changes in thermodynamic properties corresponding to the macroscopic phase transition, are therefore too small to be measured by the present techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Roux, G. Perron, and J. E. Desnoyers,J. Solution Chem. 7, 639 (1978).

    Google Scholar 

  2. G. Roux, D. Roberts, G. Perron, and J. E. Desnoyers,J. Solution Chem. 9, 629 (1980).

    Google Scholar 

  3. M. Privat, L. Tenebre, R. Bennes, E. Tronel-Peyroz, J. M. Douillard, and L. Ghaicha,Langmuir 4, 1151 (1988).

    Google Scholar 

  4. D. Beysens and D. Estève,Phys. Rev. Lett. 54, 2123 (1985).

    Google Scholar 

  5. L. Ghaicha, M. Privat, L. Tenebre, R. Bennes, E. Tronel-Peyroz, and J. M. Douillard,Langmuir 4, 1326 (1988).

    Google Scholar 

  6. D. W. Pohl and W. I. Goldburg,Phys. Rev. Lett. 48, 1111 (1982).

    Google Scholar 

  7. U. Kaatze and D. Woermann,J. Phys. Chem. 88, 284 (1984).

    Google Scholar 

  8. U. Kaatze, Chr. Neumann, and R. Pottel,J. Solution Chem. 16, 191 (1987).

    Google Scholar 

  9. W. Mayer and D. Woermann,Ber. Bunsenges. Phys. Chem. 94, 145 (1990).

    Google Scholar 

  10. M. Jungk, L. Belkoura, and D. Woermann,Ber. Bunsenges Phys. Chem. 91, 507 (1987).

    Google Scholar 

  11. N. Ito and T. Kato,J. Phys. Chem. 88, 801 (1984).

    Google Scholar 

  12. E. Gulari, A. F. Collings, R. L. Schmidt, and C. J. Pings,J. Chem. Phys. 56, 6169 (1972).

    Google Scholar 

  13. A. Stein, S. J. Stevens, J. C. Allegra, and G. F. Allen,J. Chem. Phys. 56, 6164, (1972).

    Google Scholar 

  14. V. P. Gutschick and C. J. Pings,J. Chem. Phys. 55, 3845 (1971).

    Google Scholar 

  15. F. Quirion, L. J. Magid, and M. Drifford,Langmuir 6, 244 (1990).

    Google Scholar 

  16. G. D'Arrigo, F. Mallamace, N. Micali, A. Paparelli, J. Teixeira, and C. Vasi,Prog. Colloid Polym. Sci. 84, 177 (1991).

    Google Scholar 

  17. H. L. Cox and L. H. Cretcher,J. Am. Chem. Soc. 48, 451 (1926).

    Google Scholar 

  18. H.-J. Zimmer and D. Woermann,Ber. Bunsenges. Phys. Chem. 95, 533 (1991).

    Google Scholar 

  19. Y. Shindo and K. Kusano,J. Chem. Eng. Data. 24, 106 (1979).

    Google Scholar 

  20. R. J. Fanning and P. Kruus,Can. J. Chem. 48, 2052 (1972).

    Google Scholar 

  21. S. Nishikawa and T. Uchida,J. Solution Chem. 12, 771 (1983).

    Google Scholar 

  22. F. Quirion, D. Lambert, and G. Perron,Can. J. Chem. 70, 2745 (1992).

    Google Scholar 

  23. S. D. Christian,J. Phys. Chem. 64, 764 (1960); H. Mackle and R. T. B. McLean,Trans. Faraday Soc. 56, 115 (1960); P. Pollack and R. T. B. McLean,Can. J. Chem. 45, 3089 (1967); M. R. Mohilner, L. M. Bowman, S. T. Freeland, and H. Nakadomari,J. Electrochem. Soc. 120, 1658 (1973).

    Google Scholar 

  24. J. Biais, L. Adberg, and P. Stenius,J. Colloid Inter. Sci. 86, 350 (1982).

    Google Scholar 

  25. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 6377 (1974).

    Google Scholar 

  26. P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn.,3 631 (1971).

    Google Scholar 

  27. J. P. Cox and E. F. G. Herrington,Trans. Faraday Soc. 52, 928 (1956).

    Google Scholar 

  28. G. P. Gladden and M. M. Breuer,J. Colloid Inter. Sci. 53, 249 (1975).

    Google Scholar 

  29. Complete set of tabular data may be purchased from The Depository of Unpublished Data, CISTI, National Research Council of Canada, Ottawa, Canada, K1A 0S2.

  30. B. E. Conway and L. H. Laliberté inHydrogen-Bonded Solvent Systems, A. K. Covington and P. Jones, eds., (Taylor and Francis Ltd, London, 1968) p. 139.

    Google Scholar 

  31. O. Enea, P. P. Singh, and L. G. Hepler,J. Solution Chem. 6, 719 (1977).

    Google Scholar 

  32. G. Perron, L. Couture, and J. E. Desnoyers,J. Solution Chem. 21, 433 (1992).

    Google Scholar 

  33. A. H. Roux and J. E. Desnoyers,Proc. Ind. Acad. Sci. (Chem. Ser.) 98, 435 (1987).

    Google Scholar 

  34. J. E. Desnoyers and C. Jolicoeur inComprehensive Trearise of Electrochemistry, Vol. 5, B. E. Conway, J. O'M. Bockris, and E. Yeager, eds., (Plenum, New York, 1983).

    Google Scholar 

  35. F. Franks and J. E. Desnoyers, inWater Science Reviews, No. 1, F. Franks, ed., (Cambridge University Press, 1985) p. 171.

  36. J. E. Desnoyers,Pure Appl. Chem. 54, 1469 (1982).

    Google Scholar 

  37. S. W. Benson,J. Am. Chem. Soc. 100, 5640 (1978).

    Google Scholar 

  38. M. Fixman,J. Chem. Phys. 36, 1957 (1962).

    Google Scholar 

  39. V. K. Filippov and G. C. Chernik,Thermochimica Acta 101, 65 (1986).

    Google Scholar 

  40. G. Caron and J. E. Desnoyers,J. colloid Inter. Sci. 119, 141 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perron, G., Quirion, F., Lambert, D. et al. Thermodynamic properties of aqueous organic mixtures near the critical demixing: Cases of 2,6-dimethylpyridine and of 2-isobutoxyethanol. J Solution Chem 22, 107–124 (1993). https://doi.org/10.1007/BF00650678

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650678

Key words

Navigation