Skip to main content
Log in

Effect of charge on the standard partial molar volumes and heat capacities of organic electrolytes in methanol and water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Previously developed additivity schemes for nonelectrolytes have been used to estimate\(\bar V_2^{\text{o}} \) and\(\bar C_{{\text{p}},2}^{\text{o}} \) for tetraalkyl and tetraphenyl methanes in methanol and water. Corrections have been applied to the thermodynamic values of these model compounds to account for a variation in size of the central atom, and these were used to ascertain the effect of charge on\(\bar V_2^{\text{o}} \) and\(\bar C_{{\text{p}},2}^{\text{o}} \) of alkyl and phenyl quaternary ions having N, P and B as central atoms. Investigations of R4NBr, (R=methyl to heptyl) salts show that the charge effect on\(\bar V_2^{\text{o}} \) and\(\bar C_{{\text{p}},2}^{\text{o}} \) of R4N+ ions is large and relatively independent of ion size suggesting that the solvent molecules penetrate the ions. The ability to estimate\(\bar V_2^{\text{o}} \) and\(\bar C_{{\text{p}},2}^{\text{o}} \) of the quaternary ions in the bromide salt solutions has made it possible to make ionic assignments with some confidence;\(\bar V_2^{\text{o}} \) (Br) has been evaluated as 19.7±2 and 30.2±7 cm3-mol−1 and\(\bar C_{{\text{p}},2}^{\text{o}} \) (Br) as −83±7 and −68±30 J-K−1-mol−1 in methanol and water, respectively. The use of organic ions for making ionic assignments of\(\bar V_2^{\text{o}} \) and\(\bar C_{{\text{p}},2}^{\text{o}} \) is critically examined and comparisons with other assignments are made. The scaled particle theory is employed to divide the heat capacities of electrolytes into cavity and interaction contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Conway,J. Solution Chem. 7, 721 (1978).

    Google Scholar 

  2. R. Zana, G. Perron, and J. E. Desnoyers,J. Solution Chem. 8, 729 (1979).

    Google Scholar 

  3. F. J. Millero,J. Phys. Chem. 75, 280 (1971).

    Google Scholar 

  4. J. I. Kim,J. Phys. Chem. 82, 191 (1978).

    Google Scholar 

  5. M. R. J. Dack, K. J. Bird, and A. J. Parker,Aust. J. Chem. 28, 955 (1975).

    Google Scholar 

  6. R. Zana, G. A. Lage, and C. M. Criss,J. Solution Chem. 9, 667 (1980).

    Google Scholar 

  7. C. Jolicoeur and J. C. Mercier,J. Phys Chem. 81, 1119 (1977).

    Google Scholar 

  8. B. E. Conway, R. Verrall, and J. E. Desnoyers,Trans. Faraday Soc. 62, 2738 (1966).

    Google Scholar 

  9. C. Shin, I. Worsley, and C. M. Criss,J. Solution Chem. 5, 867 (1976).

    Google Scholar 

  10. C. Shin and C. M. Criss,J. Solution Chem. 7, 205 (1978).

    Google Scholar 

  11. Y. S. Choi and C. M. Criss,Faraday Disc. Chem. Soc. 64, 204 (1978).

    Google Scholar 

  12. C. Jolicoeur, P. R. Philip, G. Perron, P. A. Leduc, and J. E. Desnoyers,Can. J. Chem. 50, 3167 (1972).

    Google Scholar 

  13. B. Conway, R. Verrall, and J. E. Desnoyers,Z. Phys. Chem. (Leipzig). 230, 157 (1965).

    Google Scholar 

  14. B. Conway, J. E. Desnoyers, and R. VerrallJ. Phys. Chem. 75, 3031 (1971).

    Google Scholar 

  15. B. S. Krumgalz,J.C.S. Faraday Trans. I 76, 1887 (1980).

    Google Scholar 

  16. R. N. French and C. M. Criss,J. Solution Chem. 10, 231 (1981).

    Google Scholar 

  17. R. N. French and C. M. Criss,J. Solution Chem. 10, 699 (1981).

    Google Scholar 

  18. R. N. French and C. M. Criss,J. Solution Chem. 10, 713 (1981).

    Google Scholar 

  19. O. Redlich and D. M. Meyer,Chem. Rev. 64, 221 (1964).

    Google Scholar 

  20. A. J. Pasztor and C. M. Criss,J. Solution Che. 7, 27 (1978).

    Google Scholar 

  21. S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. Shaw, and R. Walsh,Chem. Rev. 69, 279 (1969).

    Google Scholar 

  22. J. T. Edward,J. Chem. Educ. 47, 261 (1970).

    Google Scholar 

  23. A. Bordi,J. Phys. Chem. 68, 441 (1964).

    Google Scholar 

  24. B. E. Conway, D. M. Novak, and L. LaliberteJ. Solution Chem. 3, 683 (1974).

    Google Scholar 

  25. C. Shin and C. M. Criss, unpublished results.

  26. F. Kawaizumi and R. Zana,J. Phys. Chem. 78, 1099 (1974).

    Google Scholar 

  27. K. M. Kale and R. Zana,J. Solution Chem. 6, 733 (1977).

    Google Scholar 

  28. F. Kawaizumi and R. Zana,J. Phys. Chem. 78, 627 (1974).

    Google Scholar 

  29. C. Jolicoeur and P. Philip,J. Solution Chem. 4, 3 (1975).

    Google Scholar 

  30. K. Takaizumi and T. Wakabayashi,J. Solution Chem. 9, 809 (1980).

    Google Scholar 

  31. F. J. Millero,J. Phys. Chem. 73, 2417 (1969).

    Google Scholar 

  32. J. Padova and I. Abrahhamer,J. Phys. Chem. 71, 2112 (1967).

    Google Scholar 

  33. F. J. Millero,Chem. Rev. 71, 147 (1971).

    Google Scholar 

  34. G. Perron, N. Desrosiers, and J. E. Desnoyers,Can. J. Chem. 54, 2163 (1976).

    Google Scholar 

  35. J. E. Desnoyers, C. DeVisser, G. Perron, and P. Picker,J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  36. R. Zana and E. Yeager,J. Phys. Chem. 71, 521 (1967).

    Google Scholar 

  37. C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 86, 5390 (1964).

    Google Scholar 

  38. R. M. Noyers,J. Am. Chem. Soc. 86, 971 (1974).

    Google Scholar 

  39. P. R. Tremaine, N. H. Sagert, and G. J. Wallace,J. Phys. Chem. 85, 1977 (1981).

    Google Scholar 

  40. J. W. Akitt,J.C.S. Faraday Trans. I. 76, 225 (1980).

    Google Scholar 

  41. A. M. Couture and K. J. Laidler,Can. J. Chem. 34, 1210 (1956).

    Google Scholar 

  42. L. G. Hepler,J. Am. Chem. Soc. 61, 1426 (1957).

    Google Scholar 

  43. S. Cabani, G. Conti, and E. Matteoli,Z. Phys. Chem. N. F. 115, 121 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

French, R.N., Criss, C.M. Effect of charge on the standard partial molar volumes and heat capacities of organic electrolytes in methanol and water. J Solution Chem 11, 625–648 (1982). https://doi.org/10.1007/BF00650396

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650396

Key words

Navigation