Skip to main content
Log in

A moving-boundary technique for the measurement of diffusion in liquids. triton X-100 in water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A modified taylor dispersion technique is used to measure liquid-phase mutual diffusion coefficients D. Rather than inject a narrow band of solution of solute concentration C+ΔC into a carrier stream of composition C, the carrier stream is switched from a solution of composition C-(ΔC/2) to a solution of composition C+(ΔC/2), forming an initially-sharp moving boundary at the tube inlet. D is calculated from the refractive index profile across the broadened boundary at the tube outlet. Since the mean of concentration of the diffusing solute (C) is constant throughout the run, the calculated value of D accurately represents the differential value at C, even if relatively large concentration differences are used or if D is sensitive to composition. The advantages of the technique are illustrated by measuring the diffusion of aqueous Triton X-100, a nonionic surfactant. D is found to drop sharply as the concentration is raised through the critical micelle concentration near 0.15 g-L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Taylor,Proc. Roy Soc. (Lond.) A219, 186 (1953).

    Google Scholar 

  2. G. Taylor,Proc. Roy. Soc. (Lond.) A223, 446 (1956).

    Google Scholar 

  3. R. Aris,Proc. Roy Soc. (Lond.) A235, 67 (1956).

    Google Scholar 

  4. K. C. Pratt and W. A. Wakeham,Proc. Royal Soc. (Lond.) A330, 393 (1974).

    Google Scholar 

  5. K. C. Pratt and W. A. Wakeham,Proc. Royal. Soc. (Lond.) A342, 401 (1975).

    Google Scholar 

  6. D. F. Evans, C. Chan, and B. C. Lamartine,J. Am. Chem. Soc. 99, 6492 (1977).

    Google Scholar 

  7. A. Alizadeh, C. A. Nieto de Castro, and W. A. Wakeham,Int. J. Thermophys. 1, 243 (1980).

    Google Scholar 

  8. A. Alizadeh and W. A. Wakeham,Int. J. Thermophys. 3, 307 (1982).

    Google Scholar 

  9. M. A. Mathews, J. B. Rodden, and A. Akgerman,J. Chem. Eng. Data 32, 322 (1987).

    Google Scholar 

  10. W. E. Price, K. A. Trickett, and K. R. Harris,J. Chem. Soc. Faraday Trans. I. 85, 3281 (1989).

    Google Scholar 

  11. H. J. V. Tyrrell and K. R. Harris,Diffusion in Liquids (Butterworths, London, (1984), Chap. 5.

    Google Scholar 

  12. R. A. Robinson and R. H. Stokes,Electrolyte Solutions (Academic Press, New York, 1959), Chap. 10.

    Google Scholar 

  13. R. M. Weinheimer, D. F. Evans, and E. L. Cussler,J. Colloid Interface Sci. 80, 357 (1981).

    Google Scholar 

  14. M. Corti and V. Degiorgio,Opt. Commun. 14, 358 (1975).

    Google Scholar 

  15. M. Giglio and A. Vendramini,Phys. Rev. Lett. 38, 26 (1977).

    Google Scholar 

  16. C. Tanford, Y. Nozaki, and M. F. Rhode,J. Phys. Chem. 81, 1555 (1977).

    Google Scholar 

  17. H. H. Paradies,J. Phys. Chem. 84, 599 (1980).

    Google Scholar 

  18. W. Brown, R. Rymden, J. van Stam, M. Almgren, and G. Svensk,J. Phys. Chem. 93, 2512 (1989).

    Google Scholar 

  19. L. M. Kushner and W. D. Hubbard,J. Phys.Chem. 58, 1163. (1954).

    Google Scholar 

  20. P. Mukerjee and K. J. Mysels,Critical Micelle Concentrations of Aqueous Surfactant Solutions, Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. (U. S.) 1971.

  21. W. N. Gill and R. Sankarasubramanian,Proc. Roy Soc. (Lond.) A316, 34 (1970).

    Google Scholar 

  22. H. Margenau and G. M. Murphy,The Mathematics of Physics and Chemistry, 2nd edn., (Van Nostrand, New York, 1956), p. 517.

    Google Scholar 

  23. M. S. Lyons and J. V. Thomas,J. Am. Chem. Soc. 72, 4506 (1950).

    Google Scholar 

  24. L. J. Gosting and D. F. Akeley,J. Am. Chem. Soc. 74, 2058 (1952).

    Google Scholar 

  25. L. J. Gosting and M. S. Morris,J. Am. Chem. Soc. 71, 1998 (1949).

    Google Scholar 

  26. D. G. Leaist,Can. J. Chem. 66, 1129 (1988).

    Google Scholar 

  27. L. G. Longsworth,J. Phys. Chem. 67, 689 (1963).

    Google Scholar 

  28. H. Wennerstrom and B. Lindman,Physics Rep.52, 1 (1979).

    Google Scholar 

  29. D. G. Leaist,J. Colloid Interface Sci. 11, 230 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leaist, D.G. A moving-boundary technique for the measurement of diffusion in liquids. triton X-100 in water. J Solution Chem 20, 187–197 (1991). https://doi.org/10.1007/BF00649527

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00649527

Key Words

Navigation